TY - JOUR
T1 - 3-D Visualization for Lung Covid-19 Infection Based on U-Net CNN Segmentation
AU - Ferdinandus, F. X.
AU - Santoso, Joan
AU - Setiawan, Esther Irawati
AU - Yuniarno, Eko Mulyanto
AU - Purnama, I. Ketut Eddy
AU - Purnomo, Mauridhi Hery
N1 - Publisher Copyright:
© 1963-2012 IEEE.
PY - 2023
Y1 - 2023
N2 - Covid-19 is still the attention of researchers in medical image analysis. Following the initial respiratory diagnosis, a CT-scan examination will be performed. Segmentation of infection within the lung area is needed as the next step after the examination. In recent years, image segmentation has been carried out with the help of deep learning. U-Net convolutional neural network (CNN) is one of the deep learning-based architectures widely used in medical image segmentation. Our research aims to support radiologists in visualizing Covid-19 infection in 3-D based on CNNs U-Net segmentation. It results in two types of visualization: 3-D bitmap and 3-D Mesh. 3-D visualization can contribute to seeing the extent of infection and calculating the predicted percentage of Covid-19 infection volume in the patient's lungs. The dataset for training model CNN is relatively small, consisting of 20 CT scans of Zenodo's Covid-19 patients, divided into 17 patients, 2808 images (80%) for training, and three patients, 712 images (20%) for testing. The segmentation evaluation metrics used are Dice, precision, and accuracy, while the evaluation metrics for 3-D volume are relative volume difference (RVD) and volumetric similarity (VS). Finally, the prediction of the percentage of infection volume to the patient's lung volume is given. The evaluation results were satisfactory, obtaining 95% Dice scores for lung image segmentation and 75% for infection segmentation. The predicted 3-D visualization volume also scored higher than 90% for both lung volume and infection. Furthermore, for calculating the prediction of infection volume against lung volume, we achieved a maximum difference of 3% from the ground truth value.
AB - Covid-19 is still the attention of researchers in medical image analysis. Following the initial respiratory diagnosis, a CT-scan examination will be performed. Segmentation of infection within the lung area is needed as the next step after the examination. In recent years, image segmentation has been carried out with the help of deep learning. U-Net convolutional neural network (CNN) is one of the deep learning-based architectures widely used in medical image segmentation. Our research aims to support radiologists in visualizing Covid-19 infection in 3-D based on CNNs U-Net segmentation. It results in two types of visualization: 3-D bitmap and 3-D Mesh. 3-D visualization can contribute to seeing the extent of infection and calculating the predicted percentage of Covid-19 infection volume in the patient's lungs. The dataset for training model CNN is relatively small, consisting of 20 CT scans of Zenodo's Covid-19 patients, divided into 17 patients, 2808 images (80%) for training, and three patients, 712 images (20%) for testing. The segmentation evaluation metrics used are Dice, precision, and accuracy, while the evaluation metrics for 3-D volume are relative volume difference (RVD) and volumetric similarity (VS). Finally, the prediction of the percentage of infection volume to the patient's lung volume is given. The evaluation results were satisfactory, obtaining 95% Dice scores for lung image segmentation and 75% for infection segmentation. The predicted 3-D visualization volume also scored higher than 90% for both lung volume and infection. Furthermore, for calculating the prediction of infection volume against lung volume, we achieved a maximum difference of 3% from the ground truth value.
KW - 3-D-visualization
KW - Covid-19
KW - U-Net
KW - computer-tomography
KW - deep learning
KW - semantic segmentation
UR - http://www.scopus.com/inward/record.url?scp=85161048594&partnerID=8YFLogxK
U2 - 10.1109/TIM.2023.3280491
DO - 10.1109/TIM.2023.3280491
M3 - Article
AN - SCOPUS:85161048594
SN - 0018-9456
VL - 72
JO - IEEE Transactions on Instrumentation and Measurement
JF - IEEE Transactions on Instrumentation and Measurement
M1 - 5017311
ER -