TY - JOUR
T1 - A comparison of meta-heuristic and hyper-heuristic algorithms in solving an urban transit routing problems
AU - Muklason, Ahmad
AU - Ahlan Robbani, Shof Rijal
AU - Riksakomara, Edwin
AU - Premananda, I. Gusti Agung
N1 - Publisher Copyright:
© 2024, Institute of Advanced Engineering and Science. All rights reserved.
PY - 2024/9
Y1 - 2024/9
N2 - Public transport is a serious problem that is difficult to solve in many countries. Public transport routing optimization problem also known as urban transit routing problem (UTRP) is time-consuming process, therefore effective approches are urgently needed. UTRP aims to minimize cost passenger and operator from a combination of route set. UTRP can be optimize with heuristics, meta-heuristics, and hyper-heuristics methods. In several previous studies, UTRP can be optimized with any meta-heuristics and hyper-heuristics methods. In this study we compare the performance of meta-heuristic methods, i.e. ill-climbing, simulated annealing, and hyper-heuristics method based on modified particle swarm optimization algorithm. The experimental results showed that the proposed methods could solve UTRP effectively. Regarding their performance, the results show that despite the generality of hyper-heuristics, their performance are competitive. More specifically, hyper-heuristics method is the best method compared to the other two methods in each dataset. In addition, compared to prior studies results, he proposed hyper-heuristics could outperform them in term of cost passenger of small dataset Mandl. The main contribution of this paper is that to best of our knowledge, it is the first study comparing the performance of meta-heuristics and hyper-heuristics approaches over UTRP.
AB - Public transport is a serious problem that is difficult to solve in many countries. Public transport routing optimization problem also known as urban transit routing problem (UTRP) is time-consuming process, therefore effective approches are urgently needed. UTRP aims to minimize cost passenger and operator from a combination of route set. UTRP can be optimize with heuristics, meta-heuristics, and hyper-heuristics methods. In several previous studies, UTRP can be optimized with any meta-heuristics and hyper-heuristics methods. In this study we compare the performance of meta-heuristic methods, i.e. ill-climbing, simulated annealing, and hyper-heuristics method based on modified particle swarm optimization algorithm. The experimental results showed that the proposed methods could solve UTRP effectively. Regarding their performance, the results show that despite the generality of hyper-heuristics, their performance are competitive. More specifically, hyper-heuristics method is the best method compared to the other two methods in each dataset. In addition, compared to prior studies results, he proposed hyper-heuristics could outperform them in term of cost passenger of small dataset Mandl. The main contribution of this paper is that to best of our knowledge, it is the first study comparing the performance of meta-heuristics and hyper-heuristics approaches over UTRP.
KW - Hill climbing
KW - Hyper-heuristics
KW - Particle swarm optimization
KW - Simulated annealing
KW - Urban transit routing problem
UR - http://www.scopus.com/inward/record.url?scp=85199454447&partnerID=8YFLogxK
U2 - 10.11591/ijai.v13.i3.pp2923-2933
DO - 10.11591/ijai.v13.i3.pp2923-2933
M3 - Article
AN - SCOPUS:85199454447
SN - 2089-4872
VL - 13
SP - 2923
EP - 2933
JO - IAES International Journal of Artificial Intelligence
JF - IAES International Journal of Artificial Intelligence
IS - 3
ER -