TY - JOUR
T1 - A Novel Framework to Detect Irrelevant Software Requirements Based on MultiPhiLDA as the Topic Model
AU - Siahaan, Daniel
AU - Darnoto, Brian Rizqi Paradisiaca
N1 - Publisher Copyright:
© 2022 by the authors.
PY - 2022/12
Y1 - 2022/12
N2 - Noise in requirements has been known to be a defect in software requirements specifications (SRS). Detecting defects at an early stage is crucial in the process of software development. Noise can be in the form of irrelevant requirements that are included within an SRS. A previous study had attempted to detect noise in SRS, in which noise was considered as an outlier. However, the resulting method only demonstrated a moderate reliability due to the overshadowing of unique actor words by unique action words in the topic–word distribution. In this study, we propose a framework to identify irrelevant requirements based on the MultiPhiLDA method. The proposed framework distinguishes the topic–word distribution of actor words and action words as two separate topic–word distributions with two multinomial probability functions. Weights are used to maintain a proportional contribution of actor and action words. We also explore the use of two outlier detection methods, namely percentile-based outlier detection (PBOD) and angle-based outlier detection (ABOD), to distinguish irrelevant requirements from relevant requirements. The experimental results show that the proposed framework was able to exhibit better performance than previous methods. Furthermore, the use of the combination of ABOD as the outlier detection method and topic coherence as the estimation approach to determine the optimal number of topics and iterations in the proposed framework outperformed the other combinations and obtained sensitivity, specificity, F1-score, and G-mean values of 0.59, 0.65, 0.62, and 0.62, respectively.
AB - Noise in requirements has been known to be a defect in software requirements specifications (SRS). Detecting defects at an early stage is crucial in the process of software development. Noise can be in the form of irrelevant requirements that are included within an SRS. A previous study had attempted to detect noise in SRS, in which noise was considered as an outlier. However, the resulting method only demonstrated a moderate reliability due to the overshadowing of unique actor words by unique action words in the topic–word distribution. In this study, we propose a framework to identify irrelevant requirements based on the MultiPhiLDA method. The proposed framework distinguishes the topic–word distribution of actor words and action words as two separate topic–word distributions with two multinomial probability functions. Weights are used to maintain a proportional contribution of actor and action words. We also explore the use of two outlier detection methods, namely percentile-based outlier detection (PBOD) and angle-based outlier detection (ABOD), to distinguish irrelevant requirements from relevant requirements. The experimental results show that the proposed framework was able to exhibit better performance than previous methods. Furthermore, the use of the combination of ABOD as the outlier detection method and topic coherence as the estimation approach to determine the optimal number of topics and iterations in the proposed framework outperformed the other combinations and obtained sensitivity, specificity, F1-score, and G-mean values of 0.59, 0.65, 0.62, and 0.62, respectively.
KW - angle-based outlier detection
KW - irrelevant software requirements
KW - multiphilda
KW - noise
KW - percentile-based outlier detection
UR - http://www.scopus.com/inward/record.url?scp=85144721699&partnerID=8YFLogxK
U2 - 10.3390/informatics9040087
DO - 10.3390/informatics9040087
M3 - Article
AN - SCOPUS:85144721699
SN - 2227-9709
VL - 9
JO - Informatics
JF - Informatics
IS - 4
M1 - 87
ER -