A study of the temperature distribution in the OTEC cold water pipe using a heat and mass transfer approach

A. I. Firmansyah*, Mukhtasor, D. Satrio, S. Rahmawati, H. Ikhwani, W. A. Pratikto

*Corresponding author for this work

Research output: Contribution to journalConference articlepeer-review

Abstract

The difference between sea water temperature at a depth of around 1000 m and sea water temperature at sea level is generally used as a parameter in the design of Ocean Thermal Energy Conversion (OTEC). In practice, electricity generation is determined by the difference between the temperature of the cold seawater coming out of the Cold Water Pipe (CWP) and the temperature of the seawater at the surface. The temperature of cold sea water increases due to heat transfer experienced by cold sea water flowing through the CWP, which comes into contact with surrounding sea water which has a higher temperature. This in turn provides a lower actual temperature difference, and therefore reduces the design power capacity. However, many previous studies did not consider these lower temperature differences. This may be acceptable for cases with practically small heat transfer such as CWP with low thermal conductivity combined with good insulation used in 1000 m CWP vertical floating systems. Unfortunately, this may not be the case for many of OTEC's proposed alternative sites, which are located on land systems that require CWP lengths of five km or more. This raises the need for careful investigation to determine the temperature of the sea water coming out of the CWP, where it is necessary to calculate the temperature distribution of the cold sea water flowing through the CWP. This paper aims to estimate the temperature distribution of cold sea water flowing through the CWP and the increase in temperature of cold sea water leaving the CWP. Analysis based on the principles of mass and heat transfer was carried out in this research, where modelling was carried out numerically using a finite volume approach. For the case considered, the change in sea water temperature at CWP from depth to the surface occurs 1-3°C, which is the accumulation of each change in sea water depth. The results of this research illustrate that designing an OTEC system with a long CWP must consider the temperature distribution of cold sea water flowing through the CWP to produce a more realistic design.

Original languageEnglish
Article number012018
JournalIOP Conference Series: Earth and Environmental Science
Volume1372
Issue number1
DOIs
Publication statusPublished - 2024
EventInternational Conference on Sustainable Energy and Green Technology 2023, SEGT 2023 - Ho Chi Minh City, Viet Nam
Duration: 10 Dec 202313 Dec 2023

Keywords

  • CWP
  • Heat and mass transfer
  • OTEC
  • Ocean renewable energy
  • Temperature distribution

Fingerprint

Dive into the research topics of 'A study of the temperature distribution in the OTEC cold water pipe using a heat and mass transfer approach'. Together they form a unique fingerprint.

Cite this