A temperature-dependent storage modulus model for filler-dispersed PEG/silica composites

Allif Rosyidy Hilmi, Nur Aini Fauziyah, Suminar Pratapa*

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

10 Citations (Scopus)


In this study, a temperature-dependent storage modulus model is described and then implemented in polyethylene glycol (PEG)/silica composite systems. The study began by investigating the performance of four available models in predicting the storage modulus as a function of the temperature. Then, the best performing model, based on the simulations and the evaluations of the models, was modified by adding a new parameter C to accommodate the filler content variation. Parameter C is filler-dependent with the largest effect is on the filler composition but may also be associated with its type, size, morphology, and distribution. The best performing model was obtained by the fitting performance which was determined by calculating the minimum standard error (S). The dynamic mechanical analysis (DMA) experimental data of the PEG/silica composites were collected in the shear mode for two types of silica, i.e., quartz and cristobalite, and for three filler contents, i.e., 0, 20 and 40 wt%. The new model was implemented on all DMA data. The modeling of the storage moduli of the composites is in excellent agreement with the new approach.

Original languageEnglish
Article number106868
JournalComposites Part B: Engineering
Publication statusPublished - 15 Sept 2019


  • A. Analytical modelling
  • B. polymer-matrix composite (PMC)
  • C. Thermomechanical


Dive into the research topics of 'A temperature-dependent storage modulus model for filler-dispersed PEG/silica composites'. Together they form a unique fingerprint.

Cite this