In recent years, Indonesia has placed great attention on the use of renewable energy resources as a way to decrease gas emission. Located at the equator, Indonesia has many advantages in renewable energy resources, especially photovoltaic (PV). Photovoltaic offers a big opportunity to contribute to the power grid, yet it also comes with its challenges. The use of PV involves a major uncertainty as the inputs of PV are weather conditions that are constantly changing. With Indonesia planning to penetrate the PV farm into the power grid, it is necessary to be able to generate an accurate forecast to assist the power grid control operator. Many algorithms are applied to obtain a precise and accurate PV power generation. One of the algorithms generally used by researchers is the conventional back propagation neural network. It is one of the most commonly applied algorithms, yet it also has a complex setting and numerous parameters. To help overcome this issue, extreme learning machine (ELM) is applied alongside with backpropagation neural network (BPNN), resulting in a more promising result. However, the random value for ELM parameters has become another problem of its own. This paper discusses an advanced ELM to obtain a better PV forecast result. The combination of PV input, ambient temperature, global tilted irradiation (GTI), wind direction, wind velocity and humidity are applied on the kernel extreme learning machine (K-ELM). We found that K-ELM proposes a better performance compared to ELM in facing a nonlinear data, along with better learning capability, mapping ability, and an improved efficiency. We also developed the input data using BPNN, ELM and support vector machine (SVM) to compare training, testing and calculation time.

Original languageEnglish
Pages (from-to)134-139
Number of pages6
JournalPrzeglad Elektrotechniczny
Issue number1
Publication statusPublished - 2023


Dive into the research topics of 'Advanced Extreme Learning Machine for An Hour PV Forecast Using General Weather Data'. Together they form a unique fingerprint.

Cite this