TY - GEN
T1 - Analysis of the Reduction of Vibration and Chatter Effect in Boring Process Due to the Addition of Spring Radial Vibration Damper (SRVD) on the Workpiece
AU - Hendrowati, Wiwiek
AU - Iswanda, Mumtaza Rizky
N1 - Publisher Copyright:
© 2023, The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.
PY - 2023
Y1 - 2023
N2 - Modern machining processes have been rapidly evolving into much more sophisticated forms. However, even with such sophistication in hand, the effect of chatter remains to be a significant problem. To date, engineers keep referring to the traditional chatter stability lobe to address the problem of limiting themselves in creativity to achieve high efficiency. The research aims to observe the vibration reduction along the boring process achieved by adding one type of DVA called Spring Radial Vibration Damper (SRVD) onto the workpiece. The workpiece is a cylindrical rod with the ratio of overhang length to a diameter at 6:1. The experiment conducted in different depths of cut (DoC) varies at 0.25 mm, 0.2 mm, and 0.15 mm. The experiment results show a comparison between the main system and without the SRVD in a graphical representation of the dynamic response, percentage of RMS reduction in each parameter, and surface finish of each parameter. This paper concludes that SRVD can be beneficial for the cutting process within the unstable area of the chatter stability lobe. It will worsen the cutting process if the parameters still lie within the stable area.
AB - Modern machining processes have been rapidly evolving into much more sophisticated forms. However, even with such sophistication in hand, the effect of chatter remains to be a significant problem. To date, engineers keep referring to the traditional chatter stability lobe to address the problem of limiting themselves in creativity to achieve high efficiency. The research aims to observe the vibration reduction along the boring process achieved by adding one type of DVA called Spring Radial Vibration Damper (SRVD) onto the workpiece. The workpiece is a cylindrical rod with the ratio of overhang length to a diameter at 6:1. The experiment conducted in different depths of cut (DoC) varies at 0.25 mm, 0.2 mm, and 0.15 mm. The experiment results show a comparison between the main system and without the SRVD in a graphical representation of the dynamic response, percentage of RMS reduction in each parameter, and surface finish of each parameter. This paper concludes that SRVD can be beneficial for the cutting process within the unstable area of the chatter stability lobe. It will worsen the cutting process if the parameters still lie within the stable area.
KW - Boring
KW - Chatter
KW - Dynamic vibration absorber
KW - Reduction of vibration
KW - Spring radial vibration damper
UR - http://www.scopus.com/inward/record.url?scp=85137108827&partnerID=8YFLogxK
U2 - 10.1007/978-981-19-0867-5_8
DO - 10.1007/978-981-19-0867-5_8
M3 - Conference contribution
AN - SCOPUS:85137108827
SN - 9789811908668
T3 - Lecture Notes in Mechanical Engineering
SP - 61
EP - 68
BT - Recent Advances in Mechanical Engineering - Select Proceedings of ICOME 2021
A2 - Tolj, Ivan
A2 - Reddy, M.V.
A2 - Syaifudin, Achmad
PB - Springer Science and Business Media Deutschland GmbH
T2 - 5th International Conference on Mechanical Engineering, ICOME 2021
Y2 - 25 August 2021 through 26 August 2021
ER -