Approximation method of the axial forces on network of connectors for modular hexagonal floating structures

Nur Hanani, Nik Mohd Ridzuans Shaharuddin, Arifah Ali, Sunarsih

Research output: Contribution to journalConference articlepeer-review

Abstract

Modular floating structures are normally made up of modules which are connected using network of connectors. These connectors are prone to heavy load due to facing the open sea wave. Previous studies have examined simple module configuration such as two rectangular form arranged linearly or three or seven hexagonal form arranged in an oblique pattern experimentally or using CFD and FE packages. Two challenges persist afterward; firstly, on applying the current findings to topology made up of a bigger number of modules and secondly on estimating the axial load values of connector at the preliminary design stage. This study developed an approximation method of axial force at the connector based on basic module configuration of hexagonal modular floating structure and axial load values determined by earlier studies. Four approximation methods vary with number of modules, arrangement and connectors facing 900 wave direction were proposed. Early analysis of the proposed method revealed that the axial force of the hexagonal modular connector is affected by the overall structure type and configuration such that hexagonal module-to-module connection requires higher axial load as compared to hexagonal modular cluster-to-cluster linkage due to load distribution amongst the connectors.

Original languageEnglish
Article number012054
JournalIOP Conference Series: Earth and Environmental Science
Volume1166
Issue number1
DOIs
Publication statusPublished - 2023
Event7th International Conference on Marine Technology, SENTA 2022 - Surabaya, Indonesia
Duration: 20 Oct 2022 → …

Fingerprint

Dive into the research topics of 'Approximation method of the axial forces on network of connectors for modular hexagonal floating structures'. Together they form a unique fingerprint.

Cite this