Aldrin and its metabolite dieldrin are persistent organic pollutants that contaminate soil in many parts of the world. Given the potential hazards associated with these pollutants, an efficient degradation method is required. In this study, we investigated the ability of Pleurotus ostreatus to transform aldrin as well as dieldrin in pure liquid cultures. This fungus completely eliminated aldrin in potato dextrose broth (PDB) medium during a 14-day incubation period. Dieldrin was detected as the main metabolite, and 9-hydroxylaldrin and 9-hydroxyldieldrin were less abundant metabolites. The proposed route of aldrin biotransformation is initial metabolism by epoxidation, followed by hydroxylation. The fungus was also capable of degrading dieldrin, a recalcitrant metabolite of aldrin. Approximately 3, 9, and 18% of dieldrin were eliminated by P. ostreatus in low-nitrogen, high-nitrogen, and PDB media, respectively, during a 14-day incubation period. 9-Dihydroxydieldrin was detected as a metabolite in the PDB culture, suggesting that the hydroxylation reaction occurred in the epoxide ring. These results indicate that P. ostreatus has potential applications in the transformation of aldrin as well as dieldrin.

Original languageEnglish
Pages (from-to)320-324
Number of pages5
JournalCurrent Microbiology
Issue number3
Publication statusPublished - 1 Mar 2017


Dive into the research topics of 'Biodegradation of Aldrin and Dieldrin by the White-Rot Fungus Pleurotus ostreatus'. Together they form a unique fingerprint.

Cite this