Brain Tumor Classification in MRI Images Using En-CNN

Hapsari Peni Agustin Tjahyaningtijas, Dewinda Julianensi Rumala, Cucun Very Angkoso, Nurul Zainal Fanani, Joan Santoso, Anggraini Dwi Sensusiati, Peter M.A.Van Ooijen, I. K.E. Ketut Eddy Purnama, Mauridhi Hery Purnomo*

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

15 Citations (Scopus)

Abstract

Brain tumors are among the most common diseases of the central nervous system and are harmful. Early diagnosis is essential for patient proper treatment. Radiologists need an automated system to identify brain tumor images successfully. The identification process is often a tedious and error-prone task. Furthermore, brain tumor binary classification is often characterized by malignant and benign because it involves multi-sequence MRI (T1, T2, T1CE, and FLAIR), making radiologist's work quite challenging. Recently, several classification methods based on deep learning are being used to classify brain tumors. Each model's performance is highly dependent on the CNN architecture used. Due to the complexity of the existing CNN architecture, hyperparameter tuning becomes a problem in its application. We propose a CNN method called en-CNN to overcome this problem. This method is based on VGG-16 that consists of seven convolutional networks, four ReLU, and four max-pooling. The proposed method is used to facilitate the hyperparameter tuning. We also proposed a new approach in which the classification of brain tumors is done directly without priorly doing the segmentation process. The new approach consists of the following stages: preprocessing, image augmentation, and applying the en-CNN method. Our new approach is also doing the classification using four MRI sequences of T1, T1CE, T2, and FLAIR. The proposed method delivers accuracy on the MRI multi-sequence BraTS 2018 dataset with an accuracy of 95.5% for T1, 95.5% for T1CE, 94% for T2, and 97% for FLAIR with mini-batch size 128 and epoch 200 using ADAM optimizer. The accuracy was 4% higher than previous research in the same dataset.

Original languageEnglish
Pages (from-to)437-451
Number of pages15
JournalInternational Journal of Intelligent Engineering and Systems
Volume14
Issue number4
DOIs
Publication statusPublished - Aug 2021

Keywords

  • A brain tumor
  • Data augmentation
  • Deep learning
  • Hyperparameter

Fingerprint

Dive into the research topics of 'Brain Tumor Classification in MRI Images Using En-CNN'. Together they form a unique fingerprint.

Cite this