Caffeine and chlorogenic acid separation from raw coffee beans using supercritical CO2 in water

Siti Machmudah*, Kiwa Kitada, Mitsuru Sasaki, Motonobu Goto, Jun Munemasa, Masahiro Yamagata

*Corresponding author for this work

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

1 Citation (Scopus)

Abstract

The aim of this work was to develop new process for extracting and separating hydrophilic and hydrophobic compounds from coffee beans using supercritical CO2 in water. In this work, experiments and simulation of the process has been conducted. Chlorogenic acid and caffeine from coffee beans were used as model compounds of hydrophilic and hydrophobic compounds, respectively. Experiment was conducted in the semi-continuous flow extractor at various densities and ratios of coffee mass and water mass (C/W). Extracted compounds in SC-CO2 and in water were analyzed by HPLC-PDA detector, respectively. As expected, the extracted compound in SC-CO2 was containing 100% purity of caffeine. However, the extracted compound in water was containing caffeine and chlorogenic acid. It was due to the solubility of caffeine in water is higher than that in SC-CO2. Recovery of caffeine in SC-CO2 increased with increasing density and decreasing ratio of coffee mass and water mass (C/W). In addition, this process was also simulated using model based on mass transfer balance to estimate recovery of caffeine and to describe concentration profile inside of the extractor (both in SC-CO 2 phase and water phase). Simulation was conducted using Visual Basic in Excel 2003. As in the experimental result, the recovery of caffeine in SC-CO2 increased with the increase in density. However, the effect of C/W on the recovery of caffeine in SC-CO2 yielded adversative result. In the simulation result, the recovery of caffeine in SC-CO2 decreased with decreasing C/W. The result can be explained that increasing mass of water caused increasing mass transfer rate of caffeine in water, thus the increasing mass transfer resistance in SC-CO2. Concentration profile of caffeine in SC-CO2 phase and in water phase inside of the extractor have also been simulated.

Original languageEnglish
Title of host publicationAIChE100 - 2008 AIChE Annual Meeting, Conference Proceedings
Publication statusPublished - 2008
Externally publishedYes
Event2008 AIChE Annual Meeting, AIChE 100 - Philadelphia, PA, United States
Duration: 16 Nov 200821 Nov 2008

Publication series

NameAIChE Annual Meeting, Conference Proceedings

Conference

Conference2008 AIChE Annual Meeting, AIChE 100
Country/TerritoryUnited States
CityPhiladelphia, PA
Period16/11/0821/11/08

Fingerprint

Dive into the research topics of 'Caffeine and chlorogenic acid separation from raw coffee beans using supercritical CO2 in water'. Together they form a unique fingerprint.

Cite this