TY - GEN
T1 - Catalyst-free ethyl biodiesel production from rice bran under subcritical condition
AU - Zullaikah, Siti
AU - Afifudin, Riza
AU - Amalia, Rizky
N1 - Publisher Copyright:
© 2015 AIP Publishing LLC.
PY - 2015/12/29
Y1 - 2015/12/29
N2 - In-situ ethyl biodiesel production from rice bran under subcritical water and ethanol with no catalyst was employed. This process is environmentally friendly and is very flexible in term of feedstock utilization since it can handle relatively high moisture and free fatty acids (FFAs) contents. In addition, the alcohol, i.e. bioethanol, is a non-toxic, biodegradable, and green raw material when produced from non-edible biomass residues, leading to a 100% renewable biodiesel. The fatty acid ethyl esters (FAEEs, ethyl biodiesel) are better than fatty acid methyl esters (FAMEs, methyl biodiesel) in terms of fuel properties, including cetane number, oxidation stability and cold flow properties. The influences of the operating variables such as reaction time (1 - 10?h), ethanol concentration (12.5 - 87.5%), and pressurizing gas (N2 and CO2) on the ethyl biodiesel yield and purity have been investigated systematically while the temperature and pressure were kept constant at 200 °C and 40 bar. The optimum results were obtained at 5?h reaction time and 75% ethanol concentration using CO2 as compressing gas. Ethyl biodiesel yield and purity of 58.78% and 61.35%, respectively, were obtained using rice bran with initial FFAs content of 37.64%. FFAs level was reduced to 14.22% with crude ethyl biodiesel recovery of 95.98%. Increasing the reaction time up to 10?h only increased the yield and purity by only about 3%. Under N2 atmosphere and at the same operating conditions (5h and 75% ethanol), ethyl biodiesel yield and purity decreased to 54.63% and 58.07%, respectively, while FFAs level was increased to 17.93% and crude ethyl biodiesel recovery decreased to 87.32%.
AB - In-situ ethyl biodiesel production from rice bran under subcritical water and ethanol with no catalyst was employed. This process is environmentally friendly and is very flexible in term of feedstock utilization since it can handle relatively high moisture and free fatty acids (FFAs) contents. In addition, the alcohol, i.e. bioethanol, is a non-toxic, biodegradable, and green raw material when produced from non-edible biomass residues, leading to a 100% renewable biodiesel. The fatty acid ethyl esters (FAEEs, ethyl biodiesel) are better than fatty acid methyl esters (FAMEs, methyl biodiesel) in terms of fuel properties, including cetane number, oxidation stability and cold flow properties. The influences of the operating variables such as reaction time (1 - 10?h), ethanol concentration (12.5 - 87.5%), and pressurizing gas (N2 and CO2) on the ethyl biodiesel yield and purity have been investigated systematically while the temperature and pressure were kept constant at 200 °C and 40 bar. The optimum results were obtained at 5?h reaction time and 75% ethanol concentration using CO2 as compressing gas. Ethyl biodiesel yield and purity of 58.78% and 61.35%, respectively, were obtained using rice bran with initial FFAs content of 37.64%. FFAs level was reduced to 14.22% with crude ethyl biodiesel recovery of 95.98%. Increasing the reaction time up to 10?h only increased the yield and purity by only about 3%. Under N2 atmosphere and at the same operating conditions (5h and 75% ethanol), ethyl biodiesel yield and purity decreased to 54.63% and 58.07%, respectively, while FFAs level was increased to 17.93% and crude ethyl biodiesel recovery decreased to 87.32%.
KW - Ethyl biodiesel
KW - in situ
KW - rice bran
KW - subcritical ethanol
KW - subcritical water
UR - http://www.scopus.com/inward/record.url?scp=84975095095&partnerID=8YFLogxK
U2 - 10.1063/1.4938307
DO - 10.1063/1.4938307
M3 - Conference contribution
AN - SCOPUS:84975095095
T3 - AIP Conference Proceedings
BT - International Conference of Chemical and Material Engineering, ICCME 2015
A2 - Iskandar, Ferry
A2 - Hadiyanto, null
A2 - Budiman, Arief
A2 - Nur, Hadi
A2 - Ismadji, Suryadi
PB - American Institute of Physics Inc.
T2 - 2nd International Conference of Chemical and Material Engineering: Green Technology for Sustainable Chemical Products and Processes, ICCME 2015
Y2 - 29 September 2015 through 30 September 2015
ER -