Catalyst-free ethyl biodiesel production from rice bran under subcritical condition

Siti Zullaikah*, Riza Afifudin, Rizky Amalia

*Corresponding author for this work

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

Abstract

In-situ ethyl biodiesel production from rice bran under subcritical water and ethanol with no catalyst was employed. This process is environmentally friendly and is very flexible in term of feedstock utilization since it can handle relatively high moisture and free fatty acids (FFAs) contents. In addition, the alcohol, i.e. bioethanol, is a non-toxic, biodegradable, and green raw material when produced from non-edible biomass residues, leading to a 100% renewable biodiesel. The fatty acid ethyl esters (FAEEs, ethyl biodiesel) are better than fatty acid methyl esters (FAMEs, methyl biodiesel) in terms of fuel properties, including cetane number, oxidation stability and cold flow properties. The influences of the operating variables such as reaction time (1 - 10?h), ethanol concentration (12.5 - 87.5%), and pressurizing gas (N2 and CO2) on the ethyl biodiesel yield and purity have been investigated systematically while the temperature and pressure were kept constant at 200 °C and 40 bar. The optimum results were obtained at 5?h reaction time and 75% ethanol concentration using CO2 as compressing gas. Ethyl biodiesel yield and purity of 58.78% and 61.35%, respectively, were obtained using rice bran with initial FFAs content of 37.64%. FFAs level was reduced to 14.22% with crude ethyl biodiesel recovery of 95.98%. Increasing the reaction time up to 10?h only increased the yield and purity by only about 3%. Under N2 atmosphere and at the same operating conditions (5h and 75% ethanol), ethyl biodiesel yield and purity decreased to 54.63% and 58.07%, respectively, while FFAs level was increased to 17.93% and crude ethyl biodiesel recovery decreased to 87.32%.

Original languageEnglish
Title of host publicationInternational Conference of Chemical and Material Engineering, ICCME 2015
Subtitle of host publicationGreen Technology for Sustainable Chemical Products and Processes
EditorsFerry Iskandar, Hadiyanto, Arief Budiman, Hadi Nur, Suryadi Ismadji
PublisherAmerican Institute of Physics Inc.
ISBN (Electronic)9780735413467
DOIs
Publication statusPublished - 29 Dec 2015
Event2nd International Conference of Chemical and Material Engineering: Green Technology for Sustainable Chemical Products and Processes, ICCME 2015 - Semarang, Indonesia
Duration: 29 Sept 201530 Sept 2015

Publication series

NameAIP Conference Proceedings
Volume1699
ISSN (Print)0094-243X
ISSN (Electronic)1551-7616

Conference

Conference2nd International Conference of Chemical and Material Engineering: Green Technology for Sustainable Chemical Products and Processes, ICCME 2015
Country/TerritoryIndonesia
CitySemarang
Period29/09/1530/09/15

Keywords

  • Ethyl biodiesel
  • in situ
  • rice bran
  • subcritical ethanol
  • subcritical water

Fingerprint

Dive into the research topics of 'Catalyst-free ethyl biodiesel production from rice bran under subcritical condition'. Together they form a unique fingerprint.

Cite this