Abstract

Nanostructured ZnO was synthesized by a sonochemical reaction. Ultrasonic irradiation were set up in continuous, pulse in 3 seconds on and a second off (on:off=3:1), and pulse in 2 seconds on and a second off (on:off=2:1) wave modes for 1.5 hours. The characteristics of particles generated by these modes such as morphology, crystallinity, FTIR, photoluminescence, and photocatalytic activity to degrade methylene blue were compared. Zinc nitrate and ammonia water-based solutions were selected as chemicals without the addition of other surfactants. The morphology of the generated ZnO particles could be tuned from flower-like, needle- or hairy-like, and spherical structures by changing the mode of ultrasonic irradiation from continuous, on:off=3:1, and on:off=2:1 modes, respectively. The generated particles indicated that a wurtzite structure of ZnO in a hexagonal phase was formed. The crystalline sizes of particles generated in continuous, on:off=3:1, and on:off=2:1 modes were 28, 27, 24?nm. A similar position of reduction peak of FTIR in all samples indicated that no differences in particles chemical bonding characteristics. Photoluminescence intensity was also decreased with changes the wave mode from continuous to pulse. Photocatalytic activity was also evaluated resulting in particles synthesized by continuous mode had the highest methylene blue degradation degree following by on:off=3:1, and on:off=2:1 modes.

Original languageEnglish
Title of host publicationInternational Conference of Chemical and Material Engineering, ICCME 2015
Subtitle of host publicationGreen Technology for Sustainable Chemical Products and Processes
EditorsFerry Iskandar, Hadiyanto, Arief Budiman, Hadi Nur, Suryadi Ismadji
PublisherAmerican Institute of Physics Inc.
ISBN (Electronic)9780735413467
DOIs
Publication statusPublished - 29 Dec 2015
Event2nd International Conference of Chemical and Material Engineering: Green Technology for Sustainable Chemical Products and Processes, ICCME 2015 - Semarang, Indonesia
Duration: 29 Sept 201530 Sept 2015

Publication series

NameAIP Conference Proceedings
Volume1699
ISSN (Print)0094-243X
ISSN (Electronic)1551-7616

Conference

Conference2nd International Conference of Chemical and Material Engineering: Green Technology for Sustainable Chemical Products and Processes, ICCME 2015
Country/TerritoryIndonesia
CitySemarang
Period29/09/1530/09/15

Fingerprint

Dive into the research topics of 'Characteristics of ZnO nanostructures synthesized by sonochemical reaction: Effects of continuous and pulse waves'. Together they form a unique fingerprint.

Cite this