TY - JOUR
T1 - Combination Estimation of Smoothing Spline and Fourier Series in Nonparametric Regression
AU - Mariati, Ni Putu Ayu Mirah
AU - Budiantara, I. Nyoman
AU - Ratnasari, Vita
N1 - Publisher Copyright:
© 2020 Ni Putu Ayu Mirah Mariati et al.
PY - 2020
Y1 - 2020
N2 - So far, most of the researchers developed one type of estimator in nonparametric regression. But in reality, in daily life, data with mixed patterns were often encountered, especially data patterns which partly changed at certain subintervals, and some others followed a recurring pattern in a certain trend. The estimator method used for the data pattern was a mixed estimator method of smoothing spline and Fourier series. This regression model was approached by the component smoothing spline and Fourier series. From this process, the mixed estimator was completed using two estimation stages. The first stage was the estimation with penalized least squares (PLS), and the second stage was the estimation with least squares (LS). Those estimators were then implemented using simulated data. The simulated data were gained by generating two different functions, namely, polynomial and trigonometric functions with the size of the sample being 100. The whole process was then repeated 50 times. The experiment of the two functions was modeled using a mixture of the smoothing spline and Fourier series estimators with various smoothing and oscillation parameters. The generalized cross validation (GCV) minimum was selected as the best model. The simulation results showed that the mixed estimators gave a minimum (GCV) value of 11.98. From the minimum GCV results, it was obtained that the mean square error (MSE) was 0.71 and R2 was 99.48%. So, the results obtained indicated that the model was good for a mixture estimator of smoothing spline and Fourier series.
AB - So far, most of the researchers developed one type of estimator in nonparametric regression. But in reality, in daily life, data with mixed patterns were often encountered, especially data patterns which partly changed at certain subintervals, and some others followed a recurring pattern in a certain trend. The estimator method used for the data pattern was a mixed estimator method of smoothing spline and Fourier series. This regression model was approached by the component smoothing spline and Fourier series. From this process, the mixed estimator was completed using two estimation stages. The first stage was the estimation with penalized least squares (PLS), and the second stage was the estimation with least squares (LS). Those estimators were then implemented using simulated data. The simulated data were gained by generating two different functions, namely, polynomial and trigonometric functions with the size of the sample being 100. The whole process was then repeated 50 times. The experiment of the two functions was modeled using a mixture of the smoothing spline and Fourier series estimators with various smoothing and oscillation parameters. The generalized cross validation (GCV) minimum was selected as the best model. The simulation results showed that the mixed estimators gave a minimum (GCV) value of 11.98. From the minimum GCV results, it was obtained that the mean square error (MSE) was 0.71 and R2 was 99.48%. So, the results obtained indicated that the model was good for a mixture estimator of smoothing spline and Fourier series.
UR - http://www.scopus.com/inward/record.url?scp=85089177598&partnerID=8YFLogxK
U2 - 10.1155/2020/4712531
DO - 10.1155/2020/4712531
M3 - Article
AN - SCOPUS:85089177598
SN - 2314-4629
VL - 2020
JO - Journal of Mathematics
JF - Journal of Mathematics
M1 - 4712531
ER -