Controlled crushing device-intensified direct biodiesel production of Black Soldier Fly larvae

Eko K. Sitepu*, Sabarmin Perangin-angin, Gloria J. Ginting, Siti Machmudah, Rodiah N. Sari, Juliati Br Tarigan

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

2 Citations (Scopus)

Abstract

Insect larvae contain sufficient oil comparable with oleaginous biomass, and hence have potency as alternative biodiesel resources. The direct transesterification of Black Soldier Fly (BSF) larvae have conducted using a controllable crushing device (CCD) and a homogeneous base as a catalyst. The effect of catalyst concentration (wt.%), ratio BSF larvae to methanol (wt./v), reaction time (min) and rotational speed (rpm) on biodiesel conversion was determined. The maximum conversion of 93.8% was achieved at room temperature after 20 min of reaction time and ratio larvae to methanol of 1:2 (wt./v), catalyst concentration of 7 wt% and rotational speed of 3000 rpm. In addition, the green metrics calculation showed that this method produces less waste and uses less solvent. Some of the BSF-biodiesel properties meet the biodiesel standard. The CCD-intensified the DT of BSF larvae is a promising alternative for green and energy-saved biodiesel production.

Original languageEnglish
Article numbere16402
JournalHeliyon
Volume9
Issue number6
DOIs
Publication statusPublished - Jun 2023

Keywords

  • Biodiesel
  • In situ transesterification
  • Insect larvae
  • Room temperature

Fingerprint

Dive into the research topics of 'Controlled crushing device-intensified direct biodiesel production of Black Soldier Fly larvae'. Together they form a unique fingerprint.

Cite this