TY - JOUR
T1 - Controlling N-Doping Nature at Carbon Aerogels from Biomass for Enhanced Oxygen Reduction in Seawater Batteries
AU - Susanto, Susanto
AU - Nurtono, Tantular
AU - Widiyastuti, Widiyastuti
AU - Yeh, Min Hsin
AU - Setyawan, Heru
N1 - Publisher Copyright:
© 2024 The Authors. Published by American Chemical Society.
PY - 2024/3/26
Y1 - 2024/3/26
N2 - Pyridinic N-type doped at carbon has been known to have better electrocatalytic activity toward the oxygen reduction reaction (ORR) than the others. Herein, we proposed to prepare pyridinic N doped at carbon aerogels (CaA) derived from biomass, i.e., coir fiber (CF) and palm empty fruit bunches (PEFBs), by adjusting the pyrolysis temperature during carbonization of the biomass-based-cellulose aerogels. The cellulose aerogels were prepared by the ammonia-urea system as the cellulose solvent, in which ammonia also acted as a N source for doping and urea as the cellulose cross-linker. The as-prepared cellulose aerogels were directly pyrolyzed to produce N-doped CaA. It was found that the type of N doping is dominated by pyrrolic N at pyrolysis temperature of 600 °C, pyridinic N at 700 °C, and graphitic N at 800 °C. The pyridinic N exhibited better performance as an electrocatalyst for the ORR than pyrrolic N and graphitic N. The ORR using pyridinic N follows the four-electron pathway, which quantitatively implies a more electrochemically stable process. When used as a cathode for the Mg-air battery using a 3.5% NaCl electrolyte, the pyridinic N CaA exhibited excellent performance by giving a cell voltage of approximately 1.1 V and delivered a high discharge capacity of 411.64 mA h g-1 for CF and 492.64 mA h g-1 for PEFB corresponding to an energy density of 464.23 and 529.49 mW h g-1, respectively.
AB - Pyridinic N-type doped at carbon has been known to have better electrocatalytic activity toward the oxygen reduction reaction (ORR) than the others. Herein, we proposed to prepare pyridinic N doped at carbon aerogels (CaA) derived from biomass, i.e., coir fiber (CF) and palm empty fruit bunches (PEFBs), by adjusting the pyrolysis temperature during carbonization of the biomass-based-cellulose aerogels. The cellulose aerogels were prepared by the ammonia-urea system as the cellulose solvent, in which ammonia also acted as a N source for doping and urea as the cellulose cross-linker. The as-prepared cellulose aerogels were directly pyrolyzed to produce N-doped CaA. It was found that the type of N doping is dominated by pyrrolic N at pyrolysis temperature of 600 °C, pyridinic N at 700 °C, and graphitic N at 800 °C. The pyridinic N exhibited better performance as an electrocatalyst for the ORR than pyrrolic N and graphitic N. The ORR using pyridinic N follows the four-electron pathway, which quantitatively implies a more electrochemically stable process. When used as a cathode for the Mg-air battery using a 3.5% NaCl electrolyte, the pyridinic N CaA exhibited excellent performance by giving a cell voltage of approximately 1.1 V and delivered a high discharge capacity of 411.64 mA h g-1 for CF and 492.64 mA h g-1 for PEFB corresponding to an energy density of 464.23 and 529.49 mW h g-1, respectively.
UR - http://www.scopus.com/inward/record.url?scp=85188002372&partnerID=8YFLogxK
U2 - 10.1021/acsomega.3c09297
DO - 10.1021/acsomega.3c09297
M3 - Article
AN - SCOPUS:85188002372
SN - 2470-1343
VL - 9
SP - 13994
EP - 14004
JO - ACS Omega
JF - ACS Omega
IS - 12
ER -