COVID-19 transmission inside a small passenger vessel: Risks and mitigation

Luofeng Huang*, Soegeng Riyadi, I. K.A.P. Utama, Minghao Li, Peiyign Sun, Giles Thomas

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

10 Citations (Scopus)

Abstract

The global shipping industry has been severely influenced by the COVID-19 pandemic; in particular, a significant amount of passenger transportation has been suspended due to the concern of COVID-19 outbreak, as such voyages confine a dense crowd in a compact space. In order to accelerate the recovery of the maritime business and minimise passengers' risk of being infected, this work has developed a computational model to study the airborne transmission of COVID-19 viruses in the superstructure of a full-scale passenger vessel. Considering the vessel advancing in open water, simulations were conducted to study the particulate flow due to an infected person coughing and speaking, with the forward door open and closed. The results suggest that keeping the forward door closed will help prevent the external wind flow spreading the virus. When the forward door is closed, virus particles' coverage is shown to be limited to a radius of half a metre, less than a seat's width. Thus, an alternate seat arrangement is suggested. Furthermore, investigations were conducted on the influence of wall-mounted Air Conditioner (AC) on the virus transmission, and it was found that controlling the AC outlet direction at less than 15° downward can effectively limit the virus spread. Meanwhile, it was demonstrated that an AC's backflow tends to gather virus particles in a nearby area, thus sitting farther from an opening AC may reduce the risk of being infected. Overall, this work is expected to inform hygienic guidelines for operators to counter COVID-19 and potentially similar viruses in the future.

Original languageEnglish
Article number111486
JournalOcean Engineering
Volume255
DOIs
Publication statusPublished - 1 Jul 2022

Keywords

  • Airborne transmission
  • COVID-19
  • Computational fluid dynamics
  • Particle modelling
  • Passenger vessel
  • Virus

Fingerprint

Dive into the research topics of 'COVID-19 transmission inside a small passenger vessel: Risks and mitigation'. Together they form a unique fingerprint.

Cite this