1 Citation (Scopus)


Slip rates on active faults derived from the interseismic velocity field are critical to understanding seismic hazards in metropolitan cities. This study integrated the data from the Global Navigation Satellite System (GNSS) and Interferometric Synthetic Aperture Radar (InSAR) to evaluate the interseismic velocities in the second-largest city in Indonesia, Surabaya, where branches of the Kendeng fault (the Surabaya and the Waru faults) pass through. Data from 16 campaign-mode GNSS stations collected between 2017 and 2020 from previous research are reprocessed to estimate the velocity field. Horizontal velocities under the ITRF frame range between -23.8 mm/yr and 47.9 mm/yr toward the southeast. Vertical velocities generally range between -1.3 mm/yr and -112.2 mm/yr. Sentinel-1A SAR data of both ascending and descending tracks acquired between November 2014 and July 2020 were used to generate the interferograms with the InSAR Scientific Computing Environment (ISCE) software. Furthermore, cumulative displacement time series were constructed using the Small BAseline Subset (SBAS) technique within the Generic InSAR Analysis Toolbox (GIAnT). This study also carried out the detection of outlier SAR epochs to improve the precision of Line-of-sight (LOS) velocity estimates. The LOS velocities range from -14.8 to 10.8 mm/yr in the ascending track and from -12.7 to 9.5 mm/yr in the descending track. These results will facilitate the detection of coupling behaviors on the Kendeng fault branches, which can improve our understanding of seismic risks in the Surabaya area.

Original languageEnglish
Article number012019
JournalIOP Conference Series: Earth and Environmental Science
Issue number1
Publication statusPublished - 20 Dec 2021
EventGeomatics International Conference 2021, GEOICON 2021 - Virtual, Online, Indonesia
Duration: 27 Jul 2021 → …


Dive into the research topics of 'Crustal Deformation of the Kendeng Fault Branches Area from GNSS and InSAR Data in Surabaya City, Indonesia'. Together they form a unique fingerprint.

Cite this