TY - GEN
T1 - Deep Reinforcement Learning Control Strategy at Roundabout for i-CAR Autonomous Car
AU - Muhtadin,
AU - Meliaz, Muhammad Roychan
AU - Dikairono, Rudy
AU - Purnama, I. Ketut Eddy
AU - Purnomo, Mauridhi Hery
N1 - Publisher Copyright:
© 2023 IEEE.
PY - 2023
Y1 - 2023
N2 - Institut Teknologi Sepuluh Nopember (ITS) has successfully implemented an Autonomous Car (i-CAR) as a mode of commuter transportation within the campus. One of the difficulties in implementing the maneuver is when passing roundabouts which are scattered on the i-CAR route. This paper discusses i-CAR's maneuvers on roundabouts by implementing Deep Reinforcement Learning. The i-CAR vehicle is modeled in the CARLA simulation environment, then tested in a virtual environment in roundabouts with intersections and roundabouts without intersections that simulate U-turn maneuvers. The Deep Reinforcement method used is Deep Que Network (DQN) using various reward function configurations. Through experiments using CARLA simulations, it was obtained that Icar was able to pass roundabouts with and without intersections with an average deviation angle of 27.011 degrees and 30.068 degrees, respectively. The average time needed to pass the roundabout is 13.3 seconds and 7.9 seconds, with an average speed of 27.0 kmph and 28.5 kmph. This speed is still acceptable on campus, where the driving speed inside is limited to 40 kmph.
AB - Institut Teknologi Sepuluh Nopember (ITS) has successfully implemented an Autonomous Car (i-CAR) as a mode of commuter transportation within the campus. One of the difficulties in implementing the maneuver is when passing roundabouts which are scattered on the i-CAR route. This paper discusses i-CAR's maneuvers on roundabouts by implementing Deep Reinforcement Learning. The i-CAR vehicle is modeled in the CARLA simulation environment, then tested in a virtual environment in roundabouts with intersections and roundabouts without intersections that simulate U-turn maneuvers. The Deep Reinforcement method used is Deep Que Network (DQN) using various reward function configurations. Through experiments using CARLA simulations, it was obtained that Icar was able to pass roundabouts with and without intersections with an average deviation angle of 27.011 degrees and 30.068 degrees, respectively. The average time needed to pass the roundabout is 13.3 seconds and 7.9 seconds, with an average speed of 27.0 kmph and 28.5 kmph. This speed is still acceptable on campus, where the driving speed inside is limited to 40 kmph.
KW - Autonomous Vehicle
KW - Deep Learning
KW - Reinforcement Learning
KW - Simulation
UR - http://www.scopus.com/inward/record.url?scp=85171148036&partnerID=8YFLogxK
U2 - 10.1109/ISITIA59021.2023.10221077
DO - 10.1109/ISITIA59021.2023.10221077
M3 - Conference contribution
AN - SCOPUS:85171148036
T3 - 2023 International Seminar on Intelligent Technology and Its Applications: Leveraging Intelligent Systems to Achieve Sustainable Development Goals, ISITIA 2023 - Proceeding
SP - 473
EP - 478
BT - 2023 International Seminar on Intelligent Technology and Its Applications
PB - Institute of Electrical and Electronics Engineers Inc.
T2 - 24th International Seminar on Intelligent Technology and Its Applications, ISITIA 2023
Y2 - 26 July 2023 through 27 July 2023
ER -