TY - GEN
T1 - Design and analysis of regenerative shock absorber using ball screw mechanism for vehicle suspension
AU - Nugraha, Dhion Khairul
AU - Guntur, Harus Laksana
N1 - Publisher Copyright:
© 2019 Author(s).
PY - 2019/12/10
Y1 - 2019/12/10
N2 - This paper presents the modeling and analysis of Regenerative Shock Absorber (RSA) using ball screw mechanism. The RSA design converts the reciprocating linear motion of vehicle suspension using ball screw. Bevel gear and one-way bearing convert bidirectional rotation to unidirectional rotation and the power will be simultaneously generated. The RSA ball screw was modeled and simulated to study the characteristics, performance, and power generated. The damping force provided by RSA was analyzed with various spur gear ratios to know the damping force value. The quarter car model was simulated to know the characteristic of a vehicle body when RSA is installed. The model is based on SUV with a spur gear ratio of 1.25. With various excitation frequency which proportional to vehicle speed, the RMS power generated was 21.7 W and maximum power 40 W at 60 km/h. The RMS vehicle body vertical acceleration is 1.71 m/s2 and reduce 8.6% than RSA hydraulic type in previous work.
AB - This paper presents the modeling and analysis of Regenerative Shock Absorber (RSA) using ball screw mechanism. The RSA design converts the reciprocating linear motion of vehicle suspension using ball screw. Bevel gear and one-way bearing convert bidirectional rotation to unidirectional rotation and the power will be simultaneously generated. The RSA ball screw was modeled and simulated to study the characteristics, performance, and power generated. The damping force provided by RSA was analyzed with various spur gear ratios to know the damping force value. The quarter car model was simulated to know the characteristic of a vehicle body when RSA is installed. The model is based on SUV with a spur gear ratio of 1.25. With various excitation frequency which proportional to vehicle speed, the RMS power generated was 21.7 W and maximum power 40 W at 60 km/h. The RMS vehicle body vertical acceleration is 1.71 m/s2 and reduce 8.6% than RSA hydraulic type in previous work.
UR - http://www.scopus.com/inward/record.url?scp=85076796142&partnerID=8YFLogxK
U2 - 10.1063/1.5138344
DO - 10.1063/1.5138344
M3 - Conference contribution
AN - SCOPUS:85076796142
T3 - AIP Conference Proceedings
BT - Innovative Science and Technology in Mechanical Engineering for Industry 4.0
A2 - Djanali, Vivien
A2 - Mubarok, Fahmi
A2 - Pramujati, Bambang
A2 - Suwarno, null
PB - American Institute of Physics Inc.
T2 - 4th International Conference on Mechanical Engineering: Innovative Science and Technology in Mechanical Engineering for Industry 4.0, ICOME 2019
Y2 - 28 August 2019 through 29 August 2019
ER -