TY - JOUR
T1 - Drowsiness estimation using electroencephalogram and recurrent support vector regression
AU - Akbar, Izzat Aulia
AU - Igasaki, Tomohiko
N1 - Publisher Copyright:
© 2019 by the authors.
PY - 2019
Y1 - 2019
N2 - As a cause of accidents, drowsiness can cause economical and physical damage. A range of drowsiness estimation methods have been proposed in previous studies to aid accident prevention and address this problem. However, none of these methods are able to improve their estimation ability as the length of time or number of trials increases. Thus, in this study, we aim to find an effective drowsiness estimation method that is also able to improve its prediction ability as the subject's activity increases. We used electroencephalogram (EEG) data to estimate drowsiness, and the Karolinska sleepiness scale (KSS) for drowsiness evaluation. Five parameters (α, β/α, (θ+α)/β, activity, and mobility) from the O1 electrode site were selected. By combining these parameters and KSS, we demonstrate that a typical support vector regression (SVR) algorithm can estimate drowsiness with a correlation coefficient (R2) of up to 0.64 and a root mean square error (RMSE) of up to 0.56. We propose a "recurrent SVR" (RSVR) method with improved estimation performance, as highlighted by an R2 value of up to 0.83, and an RMSE of up to 0.15. These results suggest that in addition to being able to estimate drowsiness based on EEG data, RSVR is able to improve its drowsiness estimation performance.
AB - As a cause of accidents, drowsiness can cause economical and physical damage. A range of drowsiness estimation methods have been proposed in previous studies to aid accident prevention and address this problem. However, none of these methods are able to improve their estimation ability as the length of time or number of trials increases. Thus, in this study, we aim to find an effective drowsiness estimation method that is also able to improve its prediction ability as the subject's activity increases. We used electroencephalogram (EEG) data to estimate drowsiness, and the Karolinska sleepiness scale (KSS) for drowsiness evaluation. Five parameters (α, β/α, (θ+α)/β, activity, and mobility) from the O1 electrode site were selected. By combining these parameters and KSS, we demonstrate that a typical support vector regression (SVR) algorithm can estimate drowsiness with a correlation coefficient (R2) of up to 0.64 and a root mean square error (RMSE) of up to 0.56. We propose a "recurrent SVR" (RSVR) method with improved estimation performance, as highlighted by an R2 value of up to 0.83, and an RMSE of up to 0.15. These results suggest that in addition to being able to estimate drowsiness based on EEG data, RSVR is able to improve its drowsiness estimation performance.
KW - Driving environment
KW - Drowsiness estimation
KW - EEG
KW - Support vector regression
UR - http://www.scopus.com/inward/record.url?scp=85069807658&partnerID=8YFLogxK
U2 - 10.3390/INFO10060217
DO - 10.3390/INFO10060217
M3 - Article
AN - SCOPUS:85069807658
SN - 2078-2489
VL - 10
JO - Information (Switzerland)
JF - Information (Switzerland)
IS - 6
M1 - 217
ER -