Abstract

E-procurement is a popular enterprise information systems (EISs) that were implementing by many companies and governments in digital transformation era. E-procurement for the tendering process increases transparency and organizational performance. The objective of this paper is to utilize the web mining to gain insight from data patterns in e-procurement systems regarding procurement performance. Construction tender data from two central provinces in Indonesia: East Java and DKI Jakarta, are case studies to be absorbed from tender applications via web mining. The case studies data are processed using the multiple linear regression method to produce a predictive model for one of the effectiveness performance indicators: bidder appointment time. Four independent variables: contract price, number of participants, number of bidders, and number of revisions were proven to predict bidder appointment time significantly. The number of revisions has the most influence on bidder appointment time in terms of its coefficient value. The model can be used for tender scheduling, setting procurement targets, to resource planning.

Original languageEnglish
Title of host publicationIEEE International Conference on Industrial Engineering and Engineering Management, IEEM 2022
PublisherIEEE Computer Society
Pages924-928
Number of pages5
ISBN (Electronic)9781665486873
DOIs
Publication statusPublished - 2022
Event2022 IEEE International Conference on Industrial Engineering and Engineering Management, IEEM 2022 - Kuala Lumpur, Malaysia
Duration: 7 Dec 202210 Dec 2022

Publication series

NameIEEE International Conference on Industrial Engineering and Engineering Management
Volume2022-December
ISSN (Print)2157-3611
ISSN (Electronic)2157-362X

Conference

Conference2022 IEEE International Conference on Industrial Engineering and Engineering Management, IEEM 2022
Country/TerritoryMalaysia
CityKuala Lumpur
Period7/12/2210/12/22

Keywords

  • e-procurement
  • performance indicator
  • web mining

Fingerprint

Dive into the research topics of 'E-procurement Performance Model for Construction Tendering: Multiple Linear Regression Approach'. Together they form a unique fingerprint.

Cite this