@inproceedings{df6255f0acef42d3b0da27236e88090d,
title = "Effect of deposition time of sputtering Ag-Cu thin film on mechanical and antimicrobial properties",
abstract = "Metallic implants are important components in biomedical treatment. However, post-surgery infection often occurs after installation of implant. The infections are usually treated by antibiotics, but it still causes several secondary problems. As a prevention treatment, the surgical instruments and implants must be in a sterile condition. This action is still not optimal too because the material still can attract the bacteria. From material science point of view, it can be anticipated by developing a type of material which has antibacterial properties or called antimicrobial material. Silver (Ag) and Copper (Cu) have antimicrobial properties to prevent the infection. In this research, the influence of deposition time of Ag-Cu thin film deposition process as antimicrobial material with Physical Vapor Deposition (PVD) RF Sputtering method was analyzed. Deposition time used were for 10, 15 and 20 minutes in Argon gas pressure around 3 x 10-2 mbar in during deposition process. The morphology and surface roughness of Ag-Cu thin film were characterized using SEM and AFM. Based on the results, the deposition time influences the quality morphology that the thin films have good homogeneity and complete structure for longer deposition time. In addition, from roughness measurement results show that increase deposition time decrease the roughness of thin film. Antimicrobial performance was analyzed using Kirby Bauer Test. The results show that all of sample have good antimicrobial inhibition. Adhesion quality was evaluated using Rockwell C Indentation Test. However, the results indicate that the Ag-Cu thin film has low adhesion strength.",
keywords = "Antimicrobial Coating, Implant, PVD, Thin Film",
author = "A. Purniawan and R. Hermastuti and H. Purwaningsih and Atmono, {T. M.}",
note = "Publisher Copyright: {\textcopyright} 2018 Author(s).; 3rd International Conference on Materials and Metallurgical Engineering and Technology: Advancing Innovation in Materials Science, Technology and Applications for Sustainable Future, ICOMMET 2017 ; Conference date: 30-10-2017 Through 31-10-2017",
year = "2018",
month = apr,
day = "3",
doi = "10.1063/1.5030230",
language = "English",
series = "AIP Conference Proceedings",
publisher = "American Institute of Physics Inc.",
editor = "Hidayat, {Mas Irfan P.}",
booktitle = "Proceedings of the 3rd International Conference on Materials and Metallurgical Engineering and Technology, ICOMMET 2017",
}