TY - GEN
T1 - Effects of reduction temperature to Ni and Fe content and the morphology of agglomerate of reduced laterite limonitic nickel ore by coal-bed method
AU - Abdul, Fakhreza
AU - Pintowantoro, Sungging
AU - Kawigraha, Adji
AU - Nursidiq, Ahlidin
N1 - Publisher Copyright:
© 2018 Author(s).
PY - 2018/4/3
Y1 - 2018/4/3
N2 - As the current drop of nickel sulfide ore on earth, the attention to nickel laterite ore processing was inscreased in order to fulfill the future nickel demand needs. This research aims to optimized the process of nickel laterite ore extraction using coal bed method. This research was conducted by reducing low grade nickel laterite ore (limonitic) with nickel content of 1.25 %. The reduction process was carried out using CO gas which formed by the reaction of coal and dolomite. The Briquette of nickel ore, coal, Na2SO4 mixtures incorporated in the crucible with bed, then reduced for 6 hours at the temperature of 1200 °C. 1400 °C, and 1400 °C. The result of the research shown that the highest increase of Ni content and Ni recovery value was in the reduction temperature of 1400 °C with the increase of 3.44 %, and the recovery value of Ni equal to 86.75 %. While the highest increase of Fe content and Fe recovery value, respectively, was in the reduction temperature of 1300 °C with the increase of 22.67 % and 1200 °C with Fe recovery value of 89.41 %.
AB - As the current drop of nickel sulfide ore on earth, the attention to nickel laterite ore processing was inscreased in order to fulfill the future nickel demand needs. This research aims to optimized the process of nickel laterite ore extraction using coal bed method. This research was conducted by reducing low grade nickel laterite ore (limonitic) with nickel content of 1.25 %. The reduction process was carried out using CO gas which formed by the reaction of coal and dolomite. The Briquette of nickel ore, coal, Na2SO4 mixtures incorporated in the crucible with bed, then reduced for 6 hours at the temperature of 1200 °C. 1400 °C, and 1400 °C. The result of the research shown that the highest increase of Ni content and Ni recovery value was in the reduction temperature of 1400 °C with the increase of 3.44 %, and the recovery value of Ni equal to 86.75 %. While the highest increase of Fe content and Fe recovery value, respectively, was in the reduction temperature of 1300 °C with the increase of 22.67 % and 1200 °C with Fe recovery value of 89.41 %.
KW - Briquette
KW - Coal Bed
KW - Laterite Limonitic Nickel Ore
KW - Reducing Temperature
UR - http://www.scopus.com/inward/record.url?scp=85045616685&partnerID=8YFLogxK
U2 - 10.1063/1.5030256
DO - 10.1063/1.5030256
M3 - Conference contribution
AN - SCOPUS:85045616685
T3 - AIP Conference Proceedings
BT - Proceedings of the 3rd International Conference on Materials and Metallurgical Engineering and Technology, ICOMMET 2017
A2 - Hidayat, Mas Irfan P.
PB - American Institute of Physics Inc.
T2 - 3rd International Conference on Materials and Metallurgical Engineering and Technology: Advancing Innovation in Materials Science, Technology and Applications for Sustainable Future, ICOMMET 2017
Y2 - 30 October 2017 through 31 October 2017
ER -