TY - GEN
T1 - Enhanced biodiesel and ethyl levulinate production from rice bran through non catalytic in situ transesterification under subcritical water ethanol mixture
AU - Zullaikah, Siti
AU - Utami, Sri
AU - Herminanto, Rifky Putra
AU - Rachimoellah, M.
N1 - Publisher Copyright:
© 2019 Trans Tech Publications Ltd, Switzerland.
PY - 2019
Y1 - 2019
N2 - In-situ transesterification method without catalysts to produce biodiesel (fatty acid ethyl esters, FAEE) from rice bran using subcritical water ethanol mixture has been investigated. This method was found to be efficient since the rice bran oil (RBO) extraction and reaction of RBO into FAEE occur simultaneously. In this process other chemical (ethyl levulinate, EL) was also formed along with FAEE. EL can be used to improve the biodiesel quality by improving the low temperature properties of biodiesel. In this study effect of co-solvent types (without co-solvent, ethyl acetate, chloroform, and n-hexane) and water ethanol ratio (20%, 40%, 50%, 60% and 80%, v/v) on the content and yield of FAEE and EL at subcritical water ethanol mixture (T= 160oC, P= 80 bar, and t= 2 h) were investigated systematically. The content and yield of FAEE and EL obtained was found to be affected by the type of co-solvent. The content of FAEE and EL obtained without co-solvent (ethanol and water polarity index were PI=5.2 and PI=10.2, respectively) and with co-solvent of ethyl acetate (PI= 4.4), chloroform (PI= 4.1) and n-hexane (PI= 0.1) were 55.80% and 3.92%, 68.63% and 1.15%, 65.56% and 2.14%, and 62.00% and 0.93%, respectively. Higher polarity index of co-solvent extracted more RBO, as consequent the yield of FAEE (79.79%) obtained was higher using ethyl acetate as co-solvent. This data also suggested that RBO contains more free fatty acids (FFA= 63.59%) rather than of triglycerides (TG= 24.94%). The content and yield of FAEE and EL decreased with increasing water ethanol ratio. The highest content of FAEE (60.57%) and EL (8.48%) and yield of FAEE (78.03%) and EL (10.92%) were obtained using water ethanol ratio of 20%, v/v.
AB - In-situ transesterification method without catalysts to produce biodiesel (fatty acid ethyl esters, FAEE) from rice bran using subcritical water ethanol mixture has been investigated. This method was found to be efficient since the rice bran oil (RBO) extraction and reaction of RBO into FAEE occur simultaneously. In this process other chemical (ethyl levulinate, EL) was also formed along with FAEE. EL can be used to improve the biodiesel quality by improving the low temperature properties of biodiesel. In this study effect of co-solvent types (without co-solvent, ethyl acetate, chloroform, and n-hexane) and water ethanol ratio (20%, 40%, 50%, 60% and 80%, v/v) on the content and yield of FAEE and EL at subcritical water ethanol mixture (T= 160oC, P= 80 bar, and t= 2 h) were investigated systematically. The content and yield of FAEE and EL obtained was found to be affected by the type of co-solvent. The content of FAEE and EL obtained without co-solvent (ethanol and water polarity index were PI=5.2 and PI=10.2, respectively) and with co-solvent of ethyl acetate (PI= 4.4), chloroform (PI= 4.1) and n-hexane (PI= 0.1) were 55.80% and 3.92%, 68.63% and 1.15%, 65.56% and 2.14%, and 62.00% and 0.93%, respectively. Higher polarity index of co-solvent extracted more RBO, as consequent the yield of FAEE (79.79%) obtained was higher using ethyl acetate as co-solvent. This data also suggested that RBO contains more free fatty acids (FFA= 63.59%) rather than of triglycerides (TG= 24.94%). The content and yield of FAEE and EL decreased with increasing water ethanol ratio. The highest content of FAEE (60.57%) and EL (8.48%) and yield of FAEE (78.03%) and EL (10.92%) were obtained using water ethanol ratio of 20%, v/v.
KW - Biodiesel
KW - Ethyl levulinate
KW - In situ transesterification
KW - Rice bran
KW - Subcritical water
UR - http://www.scopus.com/inward/record.url?scp=85071926458&partnerID=8YFLogxK
U2 - 10.4028/www.scientific.net/MSF.964.234
DO - 10.4028/www.scientific.net/MSF.964.234
M3 - Conference contribution
AN - SCOPUS:85071926458
SN - 9783035714340
T3 - Materials Science Forum
SP - 234
EP - 239
BT - Seminar on Materials Science and Technology
A2 - Noerochim, Lukman
PB - Trans Tech Publications Ltd
T2 - 4th International Seminar on Science and Technology, ISST 2018
Y2 - 9 August 2018 through 9 August 2018
ER -