TY - JOUR
T1 - Evaluation of low-dose pediatric chest CT examination using in-house developed various age-size pediatric chest phantoms
AU - Miftahuddin, Dafa
AU - Prayitno, Audiena Gelung
AU - Hariyanto, Aditya Prayugo
AU - Gani, M. Roslan A.
AU - Endarko, Endarko
N1 - Publisher Copyright:
© 2024 Elsevier B.V.
PY - 2024/8
Y1 - 2024/8
N2 - Purpose: This study aims to develop Various Age-size Pediatric Chest Phantoms (VAPC) to evaluate low-dose protocol that approximates clinical conditions achieved by low organ-specific doses and optimal image quality among the challenges of pediatric size variations. Methods: Three original pediatric data aged 1, 4, and 7 years were used as a reference for developing VAPC phantoms. Six protocols, namely standard dose (STD) and low dose (low mA and low kV) reconstructed using Filtered Back Projection (FBP) and iterative reconstruction (IR) algorithms, were investigated. This study directly measured the lungs, heart, and spinal cord dose using LD-V1 film. Linearity, Modulation Transfer Function (MTF), Contrast to Noise Ratio (CNR), and Noise Power Spectrum (NPS) were evaluated to assess the CT image quality of the VAPC phantom. Results: This study found that the mean organ-specific dose was higher than CTDIvol. A Comparison of mean lung doses showed VAPC phantom 1 (y.o.) received 74.8% and 137.2% more doses than 4 (y.o.) and 7 (y.o.), respectively. Low kV produces a lower organ dose than low mA. The linearity of CT numbers is not biased at low doses. Differences in age measures significantly influenced organ-specific dose, MTF, CNR, and NPS. Conclusion: Smaller pediatrics are still exposed to higher doses at low-dose examinations, whereas larger pediatrics have lower contrast resolution and increased image noise. CT number linearity is unbiased. The combination of low kV with FBP produces higher spatial resolution, while low mA with IR effectively reduces noise to detect low-contrast objects better.
AB - Purpose: This study aims to develop Various Age-size Pediatric Chest Phantoms (VAPC) to evaluate low-dose protocol that approximates clinical conditions achieved by low organ-specific doses and optimal image quality among the challenges of pediatric size variations. Methods: Three original pediatric data aged 1, 4, and 7 years were used as a reference for developing VAPC phantoms. Six protocols, namely standard dose (STD) and low dose (low mA and low kV) reconstructed using Filtered Back Projection (FBP) and iterative reconstruction (IR) algorithms, were investigated. This study directly measured the lungs, heart, and spinal cord dose using LD-V1 film. Linearity, Modulation Transfer Function (MTF), Contrast to Noise Ratio (CNR), and Noise Power Spectrum (NPS) were evaluated to assess the CT image quality of the VAPC phantom. Results: This study found that the mean organ-specific dose was higher than CTDIvol. A Comparison of mean lung doses showed VAPC phantom 1 (y.o.) received 74.8% and 137.2% more doses than 4 (y.o.) and 7 (y.o.), respectively. Low kV produces a lower organ dose than low mA. The linearity of CT numbers is not biased at low doses. Differences in age measures significantly influenced organ-specific dose, MTF, CNR, and NPS. Conclusion: Smaller pediatrics are still exposed to higher doses at low-dose examinations, whereas larger pediatrics have lower contrast resolution and increased image noise. CT number linearity is unbiased. The combination of low kV with FBP produces higher spatial resolution, while low mA with IR effectively reduces noise to detect low-contrast objects better.
KW - In-house phantom
KW - Low dose
KW - Modulation transfer function
KW - Noise power spectrum
KW - Pediatric
UR - http://www.scopus.com/inward/record.url?scp=85197706807&partnerID=8YFLogxK
U2 - 10.1016/j.ejrad.2024.111599
DO - 10.1016/j.ejrad.2024.111599
M3 - Article
AN - SCOPUS:85197706807
SN - 0720-048X
VL - 177
JO - European Journal of Radiology
JF - European Journal of Radiology
M1 - 111599
ER -