Evaluation of Mycobacterium tuberculosis ripA gene to detect antibiotic resistance

M. P. Koentjoro, D. S. Rahayu, A. Donastin, E. N. Prasetyo*

*Corresponding author for this work

Research output: Contribution to journalConference articlepeer-review

Abstract

Mycobacterium tuberculosis infection has remained a public health threat in Indonesia. This infection is complicated by the antibiotic-resistant of M. tuberculosis strains. The common essential in resistance comes from a mutation in genomic DNA. ripA gene is one of the regions critical in the replication and persistence of M. tuberculosis in their resistance. This gene has responsible for cell wall polymer peptidoglycan. The objective of this research was to evaluate the ripA gene in antibiotic resistance. This is to investigate and compare the ripA gene sequences of M. tuberculosis at an unprecedented rate. A total of five specimens of M. tuberculosis were isolated from tuberculosis patients with rifampicin resistance. The ripA gene from M. tuberculosis was isolated and amplified using a design primer for ripA N-terminal domain of peptidoglycan hydrolase. Further, ripA gene was analyzed using the Sanger method sequencing. The data were analyzed and compared using M. tuberculosis H37Rv from the National Center for Biotechnology Information (NCBI). In addition, the sequence was analyzed with multiple sequence alignment (Clustal IW) to identify the mutation. Our result suggests that the evaluation of genes in M. tuberculosis isolates revealed sequence variation in ripA regions (Ala701Gly). Understanding these mutations implies an evaluation of antibiotic-resistant. Furthermore, this information implies local diagnostic and treatment guidelines to cell-wall targeting antibiotics.

Original languageEnglish
Article number052014
JournalJournal of Physics: Conference Series
Volume1918
Issue number5
DOIs
Publication statusPublished - 14 Jun 2021
Event7th International Conference on Mathematics, Science, and Education 2020, ICMSE 2020 - Semarang, Virtual, Indonesia
Duration: 6 Oct 20206 Oct 2020

Fingerprint

Dive into the research topics of 'Evaluation of Mycobacterium tuberculosis ripA gene to detect antibiotic resistance'. Together they form a unique fingerprint.

Cite this