Fabrication of metal-organic framework Universitetet i Oslo-66 (UiO-66) and brown-rot fungus Gloeophyllum trabeum biocomposite (UiO-66@GT) and its application for reactive black 5 decolorization

Taufiq Rinda Alkas, Ratna Ediati, Taslim Ersam, Refdinal Nawfa, Adi Setyo Purnomo*

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

8 Citations (Scopus)

Abstract

Many various industries use synthetic dyes as their raw materials. These dyes have triggered environmental problems because of the occurring effluents, and one of the environmentally safe solutions for this problem is biodegradation through microorganisms. Reactive Black 5 (RB5) dye degradation was performed by utilizing a metal-organic framework Universitetet i Oslo-66 (UiO-66) and Gloeophyllum trabeum (GT) fungus biocomposite. The UiO-66@GT composite was fabricated by inoculating the fungal culture in flasks with the PDB medium that contained UiO-66. This biocomposite was applied to decolorize and degrade RB5 dye, while pure GT culture can decolorize about 36.47% in five days. The percentage of RB5 decolorization was shown to be increased with the addition of UiO-66; the composite could decolorize RB5 up to 72.55% after five days incubation period. Moreover, the optimum conditions for the 100% targeted rate of RB5 decolorization found by the Response Surface Methodology (RSM) are: initial RB5 concentration (72.54 mg L-1), pH (6.53), and temperature (38.06 °C). Two novel metabolites from RB5 decolorization by the composite were detected based on LCMS-QTOF analysis and were used to propose a degradation pathway: 6-((1-amino-7,8-dihydroxy-6-sulfonaphthalen-2-yl) diazinyl) cyclohexa-2,4-dien-1-ide (m/z = 360) and 3,4-diamino-5,6-dihydroxy-1,2,7,8-tetrahydronaphthalene-2,7-disulfonic acid (m/z = 354).

Original languageEnglish
Article number104129
JournalArabian Journal of Chemistry
Volume15
Issue number10
DOIs
Publication statusPublished - Oct 2022

Keywords

  • Decolorization
  • Gloeophyllum trabeum
  • MOF UiO-66
  • Reactive black 5
  • UiO-66@GT biocomposite

Fingerprint

Dive into the research topics of 'Fabrication of metal-organic framework Universitetet i Oslo-66 (UiO-66) and brown-rot fungus Gloeophyllum trabeum biocomposite (UiO-66@GT) and its application for reactive black 5 decolorization'. Together they form a unique fingerprint.

Cite this