Abstract

Iris is unique for each person, so that it can be used as one alternative solution for human identification. In this study, an iris recognition system is developed to automatically identify a person by using eye image data. Firstly, iris area of eye image is detected using Canny Edge Detection and Hough Transform methods. Secondly, texture feature of iris image is extracted using statistical moments of Wavelet Transform. Furthermore, the texture feature representation is recognized using Support Vector Machine classifier method. Experiment on CASIA eye image dataset gives good recognition rate, that is 93.5%.

Original languageEnglish
Title of host publicationProceedings of 2016 International Conference on Information and Communication Technology and Systems, ICTS 2016
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages193-198
Number of pages6
ISBN (Electronic)9781509013791
DOIs
Publication statusPublished - 24 Apr 2017
Event2016 International Conference on Information and Communication Technology and Systems, ICTS 2016 - Surabaya, Indonesia
Duration: 12 Oct 2016 → …

Publication series

NameProceedings of 2016 International Conference on Information and Communication Technology and Systems, ICTS 2016

Conference

Conference2016 International Conference on Information and Communication Technology and Systems, ICTS 2016
Country/TerritoryIndonesia
CitySurabaya
Period12/10/16 → …

Keywords

  • iris recognition
  • statistical moments
  • support vector machine
  • wavelet transform

Fingerprint

Dive into the research topics of 'Feature extraction using statistical moments of wavelet transform for iris recognition'. Together they form a unique fingerprint.

Cite this