TY - JOUR
T1 - Fenton’s Oxidation of Personal Care Product (PCP) Wastewater
T2 - A Kinetic Study and the Effects of System Parameters
AU - Riadi, Lieke
AU - Tanuwijaya, Alan Darmasaputra
AU - Je, Ricky Richard
AU - Altway, Ali
N1 - Publisher Copyright:
© 2021, International Journal of Technology. All Rights Reserved.
PY - 2021
Y1 - 2021
N2 - Personal care products (PCPs) are considered an emerging class of pollutants, and PCP wastewater is classified as hazardous because it contains organic compounds, which are linked to high chemical oxygen demand (COD) concentrations. PCP wastewater is dangerous when discharged into rivers without treatment, which entails oxidizing complex organic compounds into simpler compounds using advanced oxidation technology (AOT). Fenton’s reagent is composed of Fe2+ and H2O2 and can oxidize organic compounds, thus reducing COD concentrations. This study aims to determine the effectiveness of the AOT method by calculating COD removal in wastewater; analyze the effect of the Fe2+/H2O2 ratio, H2O2 concentration, and system pH; develop a kinetics model of COD reduction; and analyze the cost of PCP wastewater treatment. The parameters used in the study are Fe2+/H2O2 ratio, H2O2 concentration, and pH. The results of this study show that the highest level of COD removal was 88.59% at a Fe2+/H2O2 ratio of 9% w/w, a H2O2 concentration of six times the COD concentration, and a pH value of 3. The reaction followed pseudo-first-order reaction kinetics, and the reaction rate constant was 0.021 min-1. At a flow rate of 15 m3/day, which is applicable in an industrial site, the required reactor volume in a continuous system is less than that for a batch system. The required reactor volume for a plug flow reactor and a batch reactor are 1.625 m3 and 2.25 m3, respectively. The estimated cost to treat 1 liter of wastewater is IDR 1,385.
AB - Personal care products (PCPs) are considered an emerging class of pollutants, and PCP wastewater is classified as hazardous because it contains organic compounds, which are linked to high chemical oxygen demand (COD) concentrations. PCP wastewater is dangerous when discharged into rivers without treatment, which entails oxidizing complex organic compounds into simpler compounds using advanced oxidation technology (AOT). Fenton’s reagent is composed of Fe2+ and H2O2 and can oxidize organic compounds, thus reducing COD concentrations. This study aims to determine the effectiveness of the AOT method by calculating COD removal in wastewater; analyze the effect of the Fe2+/H2O2 ratio, H2O2 concentration, and system pH; develop a kinetics model of COD reduction; and analyze the cost of PCP wastewater treatment. The parameters used in the study are Fe2+/H2O2 ratio, H2O2 concentration, and pH. The results of this study show that the highest level of COD removal was 88.59% at a Fe2+/H2O2 ratio of 9% w/w, a H2O2 concentration of six times the COD concentration, and a pH value of 3. The reaction followed pseudo-first-order reaction kinetics, and the reaction rate constant was 0.021 min-1. At a flow rate of 15 m3/day, which is applicable in an industrial site, the required reactor volume in a continuous system is less than that for a batch system. The required reactor volume for a plug flow reactor and a batch reactor are 1.625 m3 and 2.25 m3, respectively. The estimated cost to treat 1 liter of wastewater is IDR 1,385.
KW - COD
KW - Fenton
KW - Operation cost
KW - PCP wastewater
UR - http://www.scopus.com/inward/record.url?scp=85110251861&partnerID=8YFLogxK
U2 - 10.14716/ijtech.v12i2.4045
DO - 10.14716/ijtech.v12i2.4045
M3 - Article
AN - SCOPUS:85110251861
SN - 2086-9614
VL - 12
SP - 298
EP - 308
JO - International Journal of Technology
JF - International Journal of Technology
IS - 2
ER -