TY - JOUR
T1 - Finite element and generalized regression neural network modelling of multiple cracks growth under the influence of multiple crack parameters
AU - Hidayat, Mas Irfan P.
AU - Pramata, Azzah D.
AU - Airlangga, Prima P.
N1 - Publisher Copyright:
© 2023, Emerald Publishing Limited.
PY - 2023/8/10
Y1 - 2023/8/10
N2 - Purpose: This study presents finite element (FE) and generalized regression neural network (GRNN) approaches for modeling multiple crack growth problems and predicting crack-growth directions under the influence of multiple crack parameters. Design/methodology/approach: To determine the crack-growth direction in aluminum specimens, multiple crack parameters representing some degree of crack propagation complexity, including crack length, inclination angle, offset and distance, were examined. FE method models were developed for multiple crack growth simulations. To capture the complex relationships among multiple crack-growth variables, GRNN models were developed as nonlinear regression models. Six input variables and one output variable comprising 65 training and 20 test datasets were established. Findings: The FE model could conveniently simulate the crack-growth directions. However, several multiple crack parameters could affect the simulation accuracy. The GRNN offers a reliable method for modeling the growth of multiple cracks. Using 76% of the total dataset, the NN model attained an R2 value of 0.985. Research limitations/implications: The models are presented for static multiple crack growth problems. No material anisotropy is observed. Practical implications: In practical crack-growth analyses, the NN approach provides significant benefits and savings. Originality/value: The proposed GRNN model is simple to develop and accurate. Its performance was superior to that of other NN models. This model is also suitable for modeling multiple crack growths with arbitrary geometries. The proposed GRNN model demonstrates its prediction capability with a simpler learning process, thus producing efficient multiple crack growth predictions and assessments.
AB - Purpose: This study presents finite element (FE) and generalized regression neural network (GRNN) approaches for modeling multiple crack growth problems and predicting crack-growth directions under the influence of multiple crack parameters. Design/methodology/approach: To determine the crack-growth direction in aluminum specimens, multiple crack parameters representing some degree of crack propagation complexity, including crack length, inclination angle, offset and distance, were examined. FE method models were developed for multiple crack growth simulations. To capture the complex relationships among multiple crack-growth variables, GRNN models were developed as nonlinear regression models. Six input variables and one output variable comprising 65 training and 20 test datasets were established. Findings: The FE model could conveniently simulate the crack-growth directions. However, several multiple crack parameters could affect the simulation accuracy. The GRNN offers a reliable method for modeling the growth of multiple cracks. Using 76% of the total dataset, the NN model attained an R2 value of 0.985. Research limitations/implications: The models are presented for static multiple crack growth problems. No material anisotropy is observed. Practical implications: In practical crack-growth analyses, the NN approach provides significant benefits and savings. Originality/value: The proposed GRNN model is simple to develop and accurate. Its performance was superior to that of other NN models. This model is also suitable for modeling multiple crack growths with arbitrary geometries. The proposed GRNN model demonstrates its prediction capability with a simpler learning process, thus producing efficient multiple crack growth predictions and assessments.
KW - Complex input-output relationship
KW - Crack growth modeling
KW - Efficient nonlinear regression model
KW - Finite element
KW - Generalized regression neural network
KW - Multiple cracks
UR - http://www.scopus.com/inward/record.url?scp=85165437526&partnerID=8YFLogxK
U2 - 10.1108/MMMS-03-2023-0105
DO - 10.1108/MMMS-03-2023-0105
M3 - Article
AN - SCOPUS:85165437526
SN - 1573-6105
VL - 19
SP - 1014
EP - 1041
JO - Multidiscipline Modeling in Materials and Structures
JF - Multidiscipline Modeling in Materials and Structures
IS - 5
ER -