TY - GEN
T1 - Girder extension effect on earthquake resilience of ship unloader crane
T2 - 4th International Conference on Mechanical Engineering: Innovative Science and Technology in Mechanical Engineering for Industry 4.0, ICOME 2019
AU - Suwarno,
AU - Syaifudin, Achmad
N1 - Publisher Copyright:
© 2019 Author(s).
PY - 2019/12/10
Y1 - 2019/12/10
N2 - Girder of a ship unloader crane (SUC) with a rated capacity of 1250 t/h has to be extended in order to follow jetty upgrading. The girder extension is limited by the railway span of gantry crane and the capacity of belt conveyor, which are maintained. This simulation aims to determine the effect of girder extension on the vulnerability of SUC to earthquake shocks in Indonesian region. A new method is proposed to evaluate earthquake resilience of crane structure that is not anchored to the ground, based on an equivalent static load of earthquake shock. The equivalent static simulation is carried out using ANSYS Mechanical APDL R18 on the 3d-truss model of SUC, which is generated based on the general arrangement drawing. To investigate the influence of earthquake shocks on the SUC structure, three variations of girder extension is applied, i.e. 3m, 6m, and 9m. The applied load consists of the SUC operating load and the earthquake load that works on the SUC structure's supports. The earthquake resilience of SUC after girder extension is evaluated by comparing the reaction forces that occur in the supports. The simulations indicated that the girder extension can reduce the earthquake resilience of SUC, depending on the direction of the earthquake propagation.
AB - Girder of a ship unloader crane (SUC) with a rated capacity of 1250 t/h has to be extended in order to follow jetty upgrading. The girder extension is limited by the railway span of gantry crane and the capacity of belt conveyor, which are maintained. This simulation aims to determine the effect of girder extension on the vulnerability of SUC to earthquake shocks in Indonesian region. A new method is proposed to evaluate earthquake resilience of crane structure that is not anchored to the ground, based on an equivalent static load of earthquake shock. The equivalent static simulation is carried out using ANSYS Mechanical APDL R18 on the 3d-truss model of SUC, which is generated based on the general arrangement drawing. To investigate the influence of earthquake shocks on the SUC structure, three variations of girder extension is applied, i.e. 3m, 6m, and 9m. The applied load consists of the SUC operating load and the earthquake load that works on the SUC structure's supports. The earthquake resilience of SUC after girder extension is evaluated by comparing the reaction forces that occur in the supports. The simulations indicated that the girder extension can reduce the earthquake resilience of SUC, depending on the direction of the earthquake propagation.
UR - http://www.scopus.com/inward/record.url?scp=85076740353&partnerID=8YFLogxK
U2 - 10.1063/1.5138359
DO - 10.1063/1.5138359
M3 - Conference contribution
AN - SCOPUS:85076740353
T3 - AIP Conference Proceedings
BT - Innovative Science and Technology in Mechanical Engineering for Industry 4.0
A2 - Djanali, Vivien
A2 - Mubarok, Fahmi
A2 - Pramujati, Bambang
A2 - Suwarno, null
PB - American Institute of Physics Inc.
Y2 - 28 August 2019 through 29 August 2019
ER -