TY - JOUR
T1 - High Selectivity Fuel from Efficient CO2 Conversion by Zn-Modified rGO and Amine-Functionalized CuO as a Photocatalyst
AU - Damastuti, Retno
AU - Susanti, Diah
AU - Prasannan, Adhimoorthy
AU - Hsiao, Wesley Wei Wen
AU - Hong, Po Da
N1 - Publisher Copyright:
© 2023 by the authors.
PY - 2023/6
Y1 - 2023/6
N2 - Reduced graphene oxide (rGO) has been used in copper (II) oxide (CuO)-based photocatalysts as an additive material. An application of this CuO-based photocatalyst is in the CO2 reduction process. The preparation of rGO by a Zn-modified Hummers’ method has resulted in a high quality of rGO in terms of excellent crystallinity and morphology. However, implementing Zn-modified rGO in CuO-based photocatalysts for the CO2 reduction process has yet to be studied. Therefore, this study explores the potential of combining Zn-modified rGO with CuO photocatalysts and performing these rGO/CuO composite photocatalysts to convert CO2 into valuable chemical products. The rGO was synthesized by using a Zn-modified Hummers’ method and covalently grafted with CuO by amine functionalization with three different compositions (1:10, 1:20, and 1:30) of rGO/CuO photocatalyst. XRD, FTIR, and SEM were used to investigate the crystallinity, chemical bonds, and morphology of the prepared rGO and rGO/CuO composites. The performance of rGO/CuO photocatalysts for the CO2 reduction process was quantitively measured by GC–MS. We found that the rGO showed successful reduction using a Zn reducing agent. The rGO sheet could be grafted with CuO particles and resulted in a good morphology of rGO/CuO, as shown from the XRD, FTIR, and SEM results. The rGO/CuO material showed photocatalytic performance due to the advantages of synergistic components and resulted in methanol, ethanolamine, and aldehyde as fuel with amounts of 37.12, 8730, and 17.1 mmol/g catalyst, respectively. Meanwhile, adding CO2 flow time increases the resulting quantity of the product. In conclusion, the rGO/CuO composite could have potential for large-scale CO2 conversion and storage applications.
AB - Reduced graphene oxide (rGO) has been used in copper (II) oxide (CuO)-based photocatalysts as an additive material. An application of this CuO-based photocatalyst is in the CO2 reduction process. The preparation of rGO by a Zn-modified Hummers’ method has resulted in a high quality of rGO in terms of excellent crystallinity and morphology. However, implementing Zn-modified rGO in CuO-based photocatalysts for the CO2 reduction process has yet to be studied. Therefore, this study explores the potential of combining Zn-modified rGO with CuO photocatalysts and performing these rGO/CuO composite photocatalysts to convert CO2 into valuable chemical products. The rGO was synthesized by using a Zn-modified Hummers’ method and covalently grafted with CuO by amine functionalization with three different compositions (1:10, 1:20, and 1:30) of rGO/CuO photocatalyst. XRD, FTIR, and SEM were used to investigate the crystallinity, chemical bonds, and morphology of the prepared rGO and rGO/CuO composites. The performance of rGO/CuO photocatalysts for the CO2 reduction process was quantitively measured by GC–MS. We found that the rGO showed successful reduction using a Zn reducing agent. The rGO sheet could be grafted with CuO particles and resulted in a good morphology of rGO/CuO, as shown from the XRD, FTIR, and SEM results. The rGO/CuO material showed photocatalytic performance due to the advantages of synergistic components and resulted in methanol, ethanolamine, and aldehyde as fuel with amounts of 37.12, 8730, and 17.1 mmol/g catalyst, respectively. Meanwhile, adding CO2 flow time increases the resulting quantity of the product. In conclusion, the rGO/CuO composite could have potential for large-scale CO2 conversion and storage applications.
KW - CO conversion
KW - composite
KW - fuel production
KW - photocatalyst
KW - rGO/CuO
UR - http://www.scopus.com/inward/record.url?scp=85164157919&partnerID=8YFLogxK
U2 - 10.3390/ma16124314
DO - 10.3390/ma16124314
M3 - Article
AN - SCOPUS:85164157919
SN - 1996-1944
VL - 16
JO - Materials
JF - Materials
IS - 12
M1 - 4314
ER -