Hollow glass microsphere-epoxy composite material for helmet application to reduce impact energy due to collision

Sutikno*, Wajan Berata, Wahyu Wijanarko

*Corresponding author for this work

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

3 Citations (Scopus)

Abstract

Helmet is used as a safety gear to prevent the impact energy from a collision, due to a motorcycle accident, from injuring the rider's head. Manufacturing of a light weighted helmet with a high absorption of impact energy, is much expected because it could increase the rider's safety and mobility. Meanwhile there are composites, which are made from two or more materials that have different characteristics, that will give a better mechanical properties compared to its original constituent material. In this research, a particular composite which is consist of 84% epoxy as its matrix and 16% Hollow Glass Microsphere (HGM) as its reinforce, is simulated by finite element method. The three-dimensional open-faced helmet model has an initial thickness of 4?mm, diameter of 87.57?mm, height 114?mm and foam thickness 20?mm. The experiment simulation is conducted according to the SNI 1811-2007 (Standar Nasional Indonesia) regulations. The penetration and absorption test instruments model are prepared also referring to the stated regulations, which are a three-dimensional head piece as the helmet holder, a 3?kg sharp pendulum, a 5?kg helmet weigh and a runway. The simulation concluded that the helmet with an 8?mm thickness has fulfilled the SNI 1811 - 2007 provisions, which stated that penetration should not happen on the lid of the helmet and the impact absorption forwarded by the helmet to the rider's head should not exceed 2000 kgf. The maximum stress and deformation are 15.44 Mpa and 8.28E-4?mm respectively. As for the impact energy forwarded by the helmet is only 460 kgf.

Original languageEnglish
Title of host publicationGreen Process, Material, and Energy
Subtitle of host publicationA Sustainable Solution for Climate Change - Proceedings of the 3rd International Conference on Engineering, Technology, and Industrial Application, ICETIA 2016
EditorsHari Prasetyo, Wisnu Setiawan, Fajar Suryawan, Munajat Tri Nugroho, Tri Widayatno, Nurul Hidayati, Eko Setiawan
PublisherAmerican Institute of Physics Inc.
ISBN (Electronic)9780735415294
DOIs
Publication statusPublished - 15 Jun 2017
Event3rd International Conference on Engineering, Technology, and Industrial Application - Green Process, Material, and Energy: A Sustainable Solution for Climate Change, ICETIA 2016 - Surakarta, Indonesia
Duration: 7 Dec 20168 Dec 2016

Publication series

NameAIP Conference Proceedings
Volume1855
ISSN (Print)0094-243X
ISSN (Electronic)1551-7616

Conference

Conference3rd International Conference on Engineering, Technology, and Industrial Application - Green Process, Material, and Energy: A Sustainable Solution for Climate Change, ICETIA 2016
Country/TerritoryIndonesia
CitySurakarta
Period7/12/168/12/16

Fingerprint

Dive into the research topics of 'Hollow glass microsphere-epoxy composite material for helmet application to reduce impact energy due to collision'. Together they form a unique fingerprint.

Cite this