Hybrid of Time Series Regression, Multivariate Generalized Space-Time Autoregressive, and Machine Learning for Forecasting Air Pollution

Hendri Prabowo, Dedy Dwi Prastyo*, Setiawan

*Corresponding author for this work

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

1 Citation (Scopus)

Abstract

The purpose of this study is to propose a new hybrid of space-time models by combining the time series regression (TSR), multivariate generalized space-time autoregressive (MGSTAR), and machine learning (ML) to forecast air pollution data in the city of Surabaya. The TSR model is used to capture linear patterns of data, especially trends and double seasonal. The MGSTAR model is employed to capture the relationship between locations, and the ML model is used to capture nonlinear patterns from the data. There are three ML models used in this study, namely feed-forward neural network (FFNN), deep learning neural network (DLNN), and long short-term memory (LSTM). So that there are three hybrid models used in this study, namely TSR-MGSTAR-FFNN, TSR-MGSTAR-DLNN, and TSR-MGSTAR-LSTM. The hybrid models will be used to forecast air pollution data consisting of CO, PM10, and NO2 at three locations in Surabaya simultaneously. Then, the performance of these three-combined hybrid models will be compared with the individual model of TSR and MGSTAR, two-combined hybrid models of MGSTAR-FFNN, MGSTAR-DLNN, MGSTAR-LSTM, and hybrid TSR-MGSTAR models based on the RMSE and sMAPE values in the out-of-sample data. Based on the smallest RMSE and sMAPE values, the analysis results show that the best model for forecasting CO is MGSTAR, forecasting PM10 is hybrid TSR-MGSTAR, and forecasting NO2 is hybrid TSR-MGSTAR-FFNN. In general, the hybrid model has better accuracy than the individual models. This result is in line with the results of the M3 and M4 forecasting competition.

Original languageEnglish
Title of host publicationSoft Computing in Data Science - 6th International Conference, SCDS 2021, Proceedings
EditorsAzlinah Mohamed, Bee Wah Yap, Jasni Mohamad Zain, Michael W. Berry
PublisherSpringer Science and Business Media Deutschland GmbH
Pages351-365
Number of pages15
ISBN (Print)9789811673337
DOIs
Publication statusPublished - 2021
Event6th International Conference on Soft Computing in Data Science, SCDS 2021 - Virtual, Online
Duration: 2 Nov 20213 Nov 2021

Publication series

NameCommunications in Computer and Information Science
Volume1489 CCIS
ISSN (Print)1865-0929
ISSN (Electronic)1865-0937

Conference

Conference6th International Conference on Soft Computing in Data Science, SCDS 2021
CityVirtual, Online
Period2/11/213/11/21

Keywords

  • Air pollution
  • Forecast
  • Hybrid
  • Machine learning
  • Space-time

Fingerprint

Dive into the research topics of 'Hybrid of Time Series Regression, Multivariate Generalized Space-Time Autoregressive, and Machine Learning for Forecasting Air Pollution'. Together they form a unique fingerprint.

Cite this