TY - GEN
T1 - Hybrid Quantum Deep Learning with Differential Privacy for Botnet DGA Detection
AU - Suryotrisongko, Hatma
AU - Musashi, Yasuo
N1 - Publisher Copyright:
© 2021 IEEE.
PY - 2021
Y1 - 2021
N2 - In the DNS query-based botnet domain generation algorithm (DGA) detection, one might argue that domain names in DNS query data might disclose sensitive information related to browsing histories. User privacy preservation is important in the current personal data protection (PDP) era. This paper proposed implementing the differential privacy approach to the hybrid quantum deep learning model for botnet DGA detection. The proposed model consists of traditional deep learning layers and a quantum layer by combining angle embedding and random layer circuits from the Pennylane framework. We used ten botnet DGA datasets: Conficker, Cryptolocker, Goz, Matsnu, New_Goz, Pushdo, Ramdo, and Rovnix. We conducted experiments with considering noise models of eight IBM quantum devices: (ibmq_5_yorktown, ibmq_armonk, ibmq_athens, ibmq_belem, ibmq_lima, ibmq_quito, ibmq_santiago, and ibmqx2). We found that our proposed hybrid quantum model delivers a satisfactory performance (92.4% of maximum accuracy), superior to the classical deep learning counterpart. However, the hyperparameters of the differential privacy implementations (l2_norm_clip, noise_multiplier, microbatches, and learning_rate) still need to be tuned to improve the privacy guarantee of our proposed models.
AB - In the DNS query-based botnet domain generation algorithm (DGA) detection, one might argue that domain names in DNS query data might disclose sensitive information related to browsing histories. User privacy preservation is important in the current personal data protection (PDP) era. This paper proposed implementing the differential privacy approach to the hybrid quantum deep learning model for botnet DGA detection. The proposed model consists of traditional deep learning layers and a quantum layer by combining angle embedding and random layer circuits from the Pennylane framework. We used ten botnet DGA datasets: Conficker, Cryptolocker, Goz, Matsnu, New_Goz, Pushdo, Ramdo, and Rovnix. We conducted experiments with considering noise models of eight IBM quantum devices: (ibmq_5_yorktown, ibmq_armonk, ibmq_athens, ibmq_belem, ibmq_lima, ibmq_quito, ibmq_santiago, and ibmqx2). We found that our proposed hybrid quantum model delivers a satisfactory performance (92.4% of maximum accuracy), superior to the classical deep learning counterpart. However, the hyperparameters of the differential privacy implementations (l2_norm_clip, noise_multiplier, microbatches, and learning_rate) still need to be tuned to improve the privacy guarantee of our proposed models.
KW - Botnet
KW - DGA
KW - Differential privacy
KW - Hybrid quantum deep learning
KW - Privacy-preservation
UR - http://www.scopus.com/inward/record.url?scp=85123276361&partnerID=8YFLogxK
U2 - 10.1109/ICTS52701.2021.9608217
DO - 10.1109/ICTS52701.2021.9608217
M3 - Conference contribution
AN - SCOPUS:85123276361
T3 - Proceedings of 2021 13th International Conference on Information and Communication Technology and System, ICTS 2021
SP - 68
EP - 72
BT - Proceedings of 2021 13th International Conference on Information and Communication Technology and System, ICTS 2021
PB - Institute of Electrical and Electronics Engineers Inc.
T2 - 13th International Conference on Information and Communication Technology and System, ICTS 2021
Y2 - 20 October 2021 through 21 October 2021
ER -