Impacts of Solar Radiation Management on Hydro-Climatic Extremes in Southeast Asia

Mou Leong Tan*, Liew Juneng, Heri Kuswanto, Hong Xuan Do, Fei Zhang

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

6 Citations (Scopus)

Abstract

Solar radiation management (SRM), or solar geoengineering, reduces the earth’s temperature by reflecting more sunlight back to space. However, the impacts of SRM remain unclear, making it difficult to project the benefits as well as consequences should this approach be adopted to combat climate change. To provide novel insight into the SRM impact on hydro-climatic extremes in Southeast Asia, this study conducts a simulation experiment for the Kelantan River Basin (KRB) in Malaysia by incorporating three bias-corrected Stratospheric Aerosol Geoengineering Large Ensemble (GLENS) members into the Soil and Water Assessment Tool Plus (SWAT+) model. The study found that SRM practices could generate substantial cooling effects on regional temperatures, leading to a reduction in projected annual precipitation and monthly precipitation during the flooding season (from November to mid-January) under SRM relative to the Representative Concentration Pathway 8.5 (RCP8.5) scenario. In addition, SRM could reduce the number of days with heavy precipitation as well as the intensity of maximum daily precipitation as compared to RCP8.5, during the 2045–2064 and 2065–2084 periods, leading to a reduction in high flows. Nevertheless, under SRM impacts, the driest months from February to May would experience comparable decreases in monthly precipitation and streamflow.

Original languageEnglish
Article number1089
JournalWater (Switzerland)
Volume15
Issue number6
DOIs
Publication statusPublished - Mar 2023

Keywords

  • Malaysia
  • SWAT+
  • climate change
  • flood
  • geoengineering
  • hydrology
  • solar radiation management

Fingerprint

Dive into the research topics of 'Impacts of Solar Radiation Management on Hydro-Climatic Extremes in Southeast Asia'. Together they form a unique fingerprint.

Cite this