Titanium dioxide (titania) nanoparticle were synthesized by coprecipitation process of titanium trichloride (TiCl3) in aqueous medium, with NH4OH as pH regulator. The pH solution was varied during the synthesis process between pH 3-8.4, and all samples were calcined temperature at 400°C for 3 hours. Characteristics and properties of the TiO2 powder were investigated using X-ray diffraction (XRD), Scanning Electron Microscopy (SEM). XRD results show that the single-phase rutile formed when the pH is less than 5, anatase single phase formed began pH 8, and the pH of the solution between 5-8 formed mixed phase rutile-Anatase-brookite, rutile-brookite or anatase-brookite. Methylene Blue (MB) photodegradation test were performed in order to evaluate photocatalytic activity. Nanoparticles TiO2 rutile, anatase phase, and mixed phase rutile-brookite, anatase-brookite used to test the photocatalytic activity by measuring the absorbance spectrum photodegradation using UV-Vis spectrometer. The test results showed that the mixture phase of rutile-brookite provide the greatest photodegradation than other phases.

Original languageEnglish
Title of host publication6th Nanoscience and Nanotechnology Symposium, NNS 2015
EditorsAdrian Nur, Fitria Rahmawati, Agus Purwanto, Endah Retno Dyartanti, Arif Jumari
PublisherAmerican Institute of Physics Inc.
ISBN (Electronic)9780735413573
Publication statusPublished - 8 Feb 2016
Event6th Nanoscience and Nanotechnology Symposium, NNS 2015 - Surakarta, Indonesia
Duration: 4 Nov 20155 Nov 2015

Publication series

NameAIP Conference Proceedings
ISSN (Print)0094-243X
ISSN (Electronic)1551-7616


Conference6th Nanoscience and Nanotechnology Symposium, NNS 2015


  • coprecipitation
  • methylene blue
  • pH effect
  • photocatalytics activity
  • titanium dioxide


Dive into the research topics of 'Influence of pH on the formulation of TiO2 powder prepared by co-precipitation of TiCl3 and photocatalytic activity'. Together they form a unique fingerprint.

Cite this