TY - JOUR
T1 - Inverted decoupling 2DoF internal model control for MIMO processes
AU - Sutikno, Juwari Purwo
AU - Azizah, Zahrotul
AU - Handogo, Renanto
AU - Hikmadiyar, Riza Aris
AU - Hisyam, Anwaruddin
N1 - Publisher Copyright:
© IJTech 2019.
PY - 2019/5
Y1 - 2019/5
N2 - In general, the multiple-input-multiple-output (MIMO) system is the main method of process control in industry. However, the interaction between variables in the process is a challenge when designing controllers for the system. Strong interaction worsens system performance. Inverted decoupling plays an important role in reducing interaction in the process. Internal model control (IMC) is the controller used in this research. A one degree of freedom (1DoF) IMC controller is only able to provide a good response to set-point tracking, and has a slow response to disturbance rejection. Therefore, a controller that has a good response to set-point tracking and disturbance rejection is a two degrees of freedom (2DoF) IMC. The tuning method uses maximum peak gain margin (Mp-GM) stability criteria based on the uncertainty model. In this study, a reduction in interaction was realized by the addition of inverted decoupling to the 2DoF IMC control scheme. The Wardle & Wood and Wood & Berry column distillation models are given as illustrative examples to demonstrate the performance of the inverted decoupling 2DoF IMC control scheme. A comparison is made of the IAE values of 1DoF IMC, 2DoF IMC, decoupling 2DoF IMC, and inverted decoupling 2DoF IMC, with inverted decoupling 2DoF IMC showing the lowest IAE value.
AB - In general, the multiple-input-multiple-output (MIMO) system is the main method of process control in industry. However, the interaction between variables in the process is a challenge when designing controllers for the system. Strong interaction worsens system performance. Inverted decoupling plays an important role in reducing interaction in the process. Internal model control (IMC) is the controller used in this research. A one degree of freedom (1DoF) IMC controller is only able to provide a good response to set-point tracking, and has a slow response to disturbance rejection. Therefore, a controller that has a good response to set-point tracking and disturbance rejection is a two degrees of freedom (2DoF) IMC. The tuning method uses maximum peak gain margin (Mp-GM) stability criteria based on the uncertainty model. In this study, a reduction in interaction was realized by the addition of inverted decoupling to the 2DoF IMC control scheme. The Wardle & Wood and Wood & Berry column distillation models are given as illustrative examples to demonstrate the performance of the inverted decoupling 2DoF IMC control scheme. A comparison is made of the IAE values of 1DoF IMC, 2DoF IMC, decoupling 2DoF IMC, and inverted decoupling 2DoF IMC, with inverted decoupling 2DoF IMC showing the lowest IAE value.
KW - 2DoF IMC
KW - Interaction
KW - Inverted decoupling
KW - MIMO system
KW - Mp-GM tuning
UR - http://www.scopus.com/inward/record.url?scp=85066873692&partnerID=8YFLogxK
U2 - 10.14716/ijtech.v10i3.2922
DO - 10.14716/ijtech.v10i3.2922
M3 - Article
AN - SCOPUS:85066873692
SN - 2086-9614
VL - 10
SP - 502
EP - 511
JO - International Journal of Technology
JF - International Journal of Technology
IS - 3
ER -