TY - JOUR
T1 - Investigation of microplastic ingestion in commercial fish from Surabaya river, Indonesia
AU - Lestari, Prieskarinda
AU - Trihadiningrum, Yulinah
AU - Warmadewanthi, I. D.A.A.
N1 - Publisher Copyright:
© 2023 Elsevier Ltd
PY - 2023/8/15
Y1 - 2023/8/15
N2 - Microplastics (MPs) were recognized as emerging environmental contaminants and ubiquitously distributed in aquatic environments, including in commercial biota. Fish are estimated as one of the most susceptible aquatic biota to ingesting microplastic (MP). Commercial fish cultivation is commonly developed in urban rivers. This situation may lead to food web safety and human health risks because most fish products are commercially available for consumption. Surabaya River, one of the main rivers in Indonesia, has been polluted by MPs. This river takes essential parts for providing clean water for Surabaya City and fishery. This study aimed to investigate: (1) MP ingestion, abundance, characteristics in commercial fish species in Surabaya River, and (2) potential influencing factors to MP ingestion in the fish. The MP ingestion was found in gills and gastrointestinal tracts (GITs) of seven commercial fish species from the Surabaya River. The highest MP abundance was found in the gill of Trichopodus trichopterus (280.73 ± 162.25 particles/g WW), in the GIT of Rasbora argyrotaenia (358.75 ± 121.98 particles/g WW), and in Notopterus notopterus (186 ± 130.81 particles/individual). The MP abundance was positively correlated to fish body size. The predominant MP polymer in both fish organs was cellophane. These MPs were mostly fiber-shaped, large-sized, and black-colored. The MP ingestion in the fish might be influenced by active/passive uptake routes, specific feeding habits, preference habitats, fish size, and MP characteristics. This investigation reveals the occurrence of MP ingestion in commercial fish, which is closely associated with human health risks via trophic transfer by accidental consumption.
AB - Microplastics (MPs) were recognized as emerging environmental contaminants and ubiquitously distributed in aquatic environments, including in commercial biota. Fish are estimated as one of the most susceptible aquatic biota to ingesting microplastic (MP). Commercial fish cultivation is commonly developed in urban rivers. This situation may lead to food web safety and human health risks because most fish products are commercially available for consumption. Surabaya River, one of the main rivers in Indonesia, has been polluted by MPs. This river takes essential parts for providing clean water for Surabaya City and fishery. This study aimed to investigate: (1) MP ingestion, abundance, characteristics in commercial fish species in Surabaya River, and (2) potential influencing factors to MP ingestion in the fish. The MP ingestion was found in gills and gastrointestinal tracts (GITs) of seven commercial fish species from the Surabaya River. The highest MP abundance was found in the gill of Trichopodus trichopterus (280.73 ± 162.25 particles/g WW), in the GIT of Rasbora argyrotaenia (358.75 ± 121.98 particles/g WW), and in Notopterus notopterus (186 ± 130.81 particles/individual). The MP abundance was positively correlated to fish body size. The predominant MP polymer in both fish organs was cellophane. These MPs were mostly fiber-shaped, large-sized, and black-colored. The MP ingestion in the fish might be influenced by active/passive uptake routes, specific feeding habits, preference habitats, fish size, and MP characteristics. This investigation reveals the occurrence of MP ingestion in commercial fish, which is closely associated with human health risks via trophic transfer by accidental consumption.
KW - Commercial fish
KW - Ingestion
KW - Microplastics
KW - Surabaya River
UR - http://www.scopus.com/inward/record.url?scp=85159916295&partnerID=8YFLogxK
U2 - 10.1016/j.envpol.2023.121807
DO - 10.1016/j.envpol.2023.121807
M3 - Article
C2 - 37201574
AN - SCOPUS:85159916295
SN - 0269-7491
VL - 331
JO - Environmental Pollution
JF - Environmental Pollution
M1 - 121807
ER -