TY - GEN
T1 - Kinematic calibration of a 3RRPS metamorphic parallel mechanism
AU - Chai, Xuheng
AU - Nurahmi, Latifah
AU - Dai, Jian S.
AU - Gan, Dongming
N1 - Publisher Copyright:
Copyright © 2020 ASME
PY - 2020
Y1 - 2020
N2 - In this paper, a kinematic calibration method is developed for a 3rRPS metamorphic parallel mechanism with respect to all unknown parameters. Each limb of the 3rRPS mechanism is composed of (rR), P, and S joints. Two joints are actuated, namely P and r joints, hence the mechanism is able to switch between the 3RPS parallel mechanism and 3US parallel mechanism. The geometric constraint equations of the 3rRPS mechanism are initially established. Then, the optimization problems for the base, platform and actuated prismatic lengths during given trajectory are formulated by using the global search optimization algorithm. A physical model of the 3rRPS metamorphic parallel mechanism is built and an experiment is setup to validate the proposed calibration and optimization models. The external device, i.e., the OptiTrack is used during the experiment for motion capture system. All unknown parameters are identified and optimized by dint of the geometric properties of this mechanism and nonlinear optimization algorithms. The experimental results demonstrate that the proposed calibration method is valid and effective.
AB - In this paper, a kinematic calibration method is developed for a 3rRPS metamorphic parallel mechanism with respect to all unknown parameters. Each limb of the 3rRPS mechanism is composed of (rR), P, and S joints. Two joints are actuated, namely P and r joints, hence the mechanism is able to switch between the 3RPS parallel mechanism and 3US parallel mechanism. The geometric constraint equations of the 3rRPS mechanism are initially established. Then, the optimization problems for the base, platform and actuated prismatic lengths during given trajectory are formulated by using the global search optimization algorithm. A physical model of the 3rRPS metamorphic parallel mechanism is built and an experiment is setup to validate the proposed calibration and optimization models. The external device, i.e., the OptiTrack is used during the experiment for motion capture system. All unknown parameters are identified and optimized by dint of the geometric properties of this mechanism and nonlinear optimization algorithms. The experimental results demonstrate that the proposed calibration method is valid and effective.
UR - http://www.scopus.com/inward/record.url?scp=85096127799&partnerID=8YFLogxK
U2 - 10.1115/DETC2020-22169
DO - 10.1115/DETC2020-22169
M3 - Conference contribution
AN - SCOPUS:85096127799
T3 - Proceedings of the ASME Design Engineering Technical Conference
BT - 44th Mechanisms and Robotics Conference (MR)
PB - American Society of Mechanical Engineers (ASME)
T2 - ASME 2020 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, IDETC-CIE 2020
Y2 - 17 August 2020 through 19 August 2020
ER -