TY - GEN
T1 - Kinetics study of carbon dioxide absorption reaction into the promoted methyldiethanolamine solution
AU - Sitorus, Yasmikha Tiurlan Susanti
AU - Taurina, Hanna Sucita
AU - Altway, Ali
AU - Rahmawati, Yeni
AU - Nurkhamidah, Siti
N1 - Publisher Copyright:
© 2017 Author(s).
PY - 2017/5/24
Y1 - 2017/5/24
N2 - The absorption of carbon dioxide (CO2) is important in the industrial world. In industries, especially petrochemical, oil, and natural gas sectors, separation process of CO2 gas which is a corrosive gas (acid gas) is required. So, the separation process of CO2 gas stream is important, one of the methods used to remove CO2 from the gas stream is reactive absorption process using the promoted methyldiethanolamine (MDEA) solution. Therefore, this study is aimed to obtain the reaction kinetics data of CO2 absorption in MDEA solution using arginine as a promoter. Arginine was chosen because of its amino acid molecule which is reactive, so it can accelerate the reaction rate of MDEA. Moreover, this study also made a comparison between the reactivity of MDEA solution using arginine and MDEA solution using other promoters (glycine and piperazine) for CO2 absorption. The method used is absorption using laboratory scale of Wetted Wall Column (WWC) equipment at 1 atm. This study provides the reaction kinetics data information in order to optimize the separation process of CO2 in the industrialized world. The experimental results show that CO2 absorption rate at 323.15 K without any additon of arginine is 2.33 × 10-7 kmol/sec. By addition of 0.5 and 1 wt% of arginine, the absorption rate becomes 4 × 10-7 kmol/sec (2 times larger) and 6 × 10-7 kmol/sec (3 times larger). These results show that the addition of arginine as a promoter can increase the absorption rate of CO2 in MDEA solution and cover the weaknesses of MDEA solution. Based on the experimental result, the reaction kinetics constant for arginine is 1.91 × 1025 exp (-12296/T) (m3/kmol.s). Although, arginine reaction rate constant is lower than glycine and piperazine.
AB - The absorption of carbon dioxide (CO2) is important in the industrial world. In industries, especially petrochemical, oil, and natural gas sectors, separation process of CO2 gas which is a corrosive gas (acid gas) is required. So, the separation process of CO2 gas stream is important, one of the methods used to remove CO2 from the gas stream is reactive absorption process using the promoted methyldiethanolamine (MDEA) solution. Therefore, this study is aimed to obtain the reaction kinetics data of CO2 absorption in MDEA solution using arginine as a promoter. Arginine was chosen because of its amino acid molecule which is reactive, so it can accelerate the reaction rate of MDEA. Moreover, this study also made a comparison between the reactivity of MDEA solution using arginine and MDEA solution using other promoters (glycine and piperazine) for CO2 absorption. The method used is absorption using laboratory scale of Wetted Wall Column (WWC) equipment at 1 atm. This study provides the reaction kinetics data information in order to optimize the separation process of CO2 in the industrialized world. The experimental results show that CO2 absorption rate at 323.15 K without any additon of arginine is 2.33 × 10-7 kmol/sec. By addition of 0.5 and 1 wt% of arginine, the absorption rate becomes 4 × 10-7 kmol/sec (2 times larger) and 6 × 10-7 kmol/sec (3 times larger). These results show that the addition of arginine as a promoter can increase the absorption rate of CO2 in MDEA solution and cover the weaknesses of MDEA solution. Based on the experimental result, the reaction kinetics constant for arginine is 1.91 × 1025 exp (-12296/T) (m3/kmol.s). Although, arginine reaction rate constant is lower than glycine and piperazine.
KW - Absorption
KW - CO
KW - Promoter
KW - Wetted Wall Column
UR - http://www.scopus.com/inward/record.url?scp=85020427204&partnerID=8YFLogxK
U2 - 10.1063/1.4982270
DO - 10.1063/1.4982270
M3 - Conference contribution
AN - SCOPUS:85020427204
T3 - AIP Conference Proceedings
BT - International Seminar on Fundamental and Application of Chemical Engineering 2016, ISFAChE 2016
A2 - Widiyastuti, null
A2 - Taufany, Fadlilatul
A2 - Nurkhamidah, Siti
PB - American Institute of Physics Inc.
T2 - 3rd International Seminar on Fundamental and Application of Chemical Engineering 2016, ISFAChE 2016
Y2 - 1 November 2016 through 2 November 2016
ER -