Abstract
Limestone powder, a by-product of top-down marble processing, exhibited high thermal stability and functionality as catalysts for the low-temperature pyrolysis of waste cooking oil (WCO) into biofuel. The marble waste (MW) contains calcite, dolomite, and quartz composites (CaCO3/MgCO3/SiO2) as non-uniform microcrystallites. Pyrolysis at 380 °C in 1 h increased the hydrocarbon composition of biofuel and reduced carboxylic acid. The biofuel composition contains 80 % hydrocarbon within the jet fuel C8-16 ranges. MW reduced the carboxylic acid concentration from 49 % in catalyst-free pyrolysis to less than 4 %. The optimum condition was obtained at 3 % MW, yielding 43.55 % linear hydrocarbon, 11.1 % cyclic hydrocarbon, and 1.02 % aromatic compounds that satisfied the bio-jet fuel classification. The incorporation of varying percentages of marble waste demonstrates a significant enhancement in the cyclic compounds, elevating the yield from ∼3 % in catalyst-free pyrolysis to an impressive ∼35 %. The hydrocarbon yield is higher when using 3%MW > 1%MW > 6%MW > 9%MW. Dolomite and calcite mixture in MW catalyzed triglyceride conversion to hydrocarbon by adsorbing carbonate in triglycerides to drive C–O bond dissociation. These studies provide a roadmap for the utilization of abundant resources locally available in Indonesia to sustain local energy demand.
Original language | English |
---|---|
Article number | 121135 |
Journal | Renewable Energy |
Volume | 232 |
DOIs | |
Publication status | Published - Oct 2024 |
Keywords
- Bio-jet fuel
- Biofuel
- Deoxygenation
- Marble waste
- Waste cooking oil