TY - JOUR
T1 - Mixed Estimator of Kernel and Fourier Series in Semiparametric Regression
AU - Afifah, Ngizatul
AU - Budiantara, I. Nyoman
AU - Latra, I. Nyoman
N1 - Publisher Copyright:
© Published under licence by IOP Publishing Ltd.
PY - 2017/6/12
Y1 - 2017/6/12
N2 - Given paired observation (xi, v1i, v2i, ⋯, vpi, t1i, t2i, ⋯, tqi, yi), i = 1, 2, ⋯, n, follow the additive semiparametric regression model yi = μ(xi, vi, ti) +i, where μ(xi,vt,ti)=f(xi)+∑j=1pgj(νji)+∑s=1qhs(tsi) vi = (v1i, v2i, ⋯, vpi)′, and ti = (t1i, t2i, ⋯, tqi)′. Random errorsi is a normal distribution with mean 0 and variance σ 2. To obtain a mixed estimator μ(xi, vi, ti), the regression curve f(xi) is approached by linier parametric, gj(vji) is kernel with bandwidths Φ = (φ1, φ2, ⋯, φp)′ and the regression curve component fourier series hs (tsi) is approached by with oscillation paremeter N. The estimator is where . Penalized Least Squares (PLS) method give Minc,β{ L(c)+L(β)+∑s=1qθsS(Hs(tsi)) } with smoothing parameter θ = (θ1, θ2, ⋯, θq)′, the estimator f(x) is and is , where and . So that, μΦ,θ,N(vi,ti)=Z(Φ,θ,N)y is the mixed estimator of μ(vi, ti) where Z(Φ, θ, N) = C(Φ, θ, N) + V(Φ) + E(Φ, θ, N) Matrix C(Φ, θ, N), V(Φ) and E(Φ, θ, N) are depended on Φ, θ and N. Optimal Φ, θ and N can be obtained by the smallest Generalized Cross Validation (GCV).
AB - Given paired observation (xi, v1i, v2i, ⋯, vpi, t1i, t2i, ⋯, tqi, yi), i = 1, 2, ⋯, n, follow the additive semiparametric regression model yi = μ(xi, vi, ti) +i, where μ(xi,vt,ti)=f(xi)+∑j=1pgj(νji)+∑s=1qhs(tsi) vi = (v1i, v2i, ⋯, vpi)′, and ti = (t1i, t2i, ⋯, tqi)′. Random errorsi is a normal distribution with mean 0 and variance σ 2. To obtain a mixed estimator μ(xi, vi, ti), the regression curve f(xi) is approached by linier parametric, gj(vji) is kernel with bandwidths Φ = (φ1, φ2, ⋯, φp)′ and the regression curve component fourier series hs (tsi) is approached by with oscillation paremeter N. The estimator is where . Penalized Least Squares (PLS) method give Minc,β{ L(c)+L(β)+∑s=1qθsS(Hs(tsi)) } with smoothing parameter θ = (θ1, θ2, ⋯, θq)′, the estimator f(x) is and is , where and . So that, μΦ,θ,N(vi,ti)=Z(Φ,θ,N)y is the mixed estimator of μ(vi, ti) where Z(Φ, θ, N) = C(Φ, θ, N) + V(Φ) + E(Φ, θ, N) Matrix C(Φ, θ, N), V(Φ) and E(Φ, θ, N) are depended on Φ, θ and N. Optimal Φ, θ and N can be obtained by the smallest Generalized Cross Validation (GCV).
UR - http://www.scopus.com/inward/record.url?scp=85023605248&partnerID=8YFLogxK
U2 - 10.1088/1742-6596/855/1/012002
DO - 10.1088/1742-6596/855/1/012002
M3 - Conference article
AN - SCOPUS:85023605248
SN - 1742-6588
VL - 855
JO - Journal of Physics: Conference Series
JF - Journal of Physics: Conference Series
IS - 1
M1 - 012002
T2 - 1st International Conference on Mathematics: Education, Theory, and Application, ICMETA 2016
Y2 - 6 December 2016 through 7 December 2016
ER -