TY - GEN
T1 - Modification of chitosan membranes with nanosilica particles as polymer electrolyte membranes
AU - Kusumastuti, Ella
AU - Siniwi, Widasari Trisna
AU - Mahatmanti, F. Widhi
AU - Jumaeri, J.
AU - Atmaja, Lukman
AU - Widiastuti, Nurul
N1 - Publisher Copyright:
© 2016 Author(s).
PY - 2016/4/19
Y1 - 2016/4/19
N2 - Chitosan has been widely used as polymer matrix for Polymer Electrolyte Membrane (PEM) application replacing Nafion which has shortcomings in terms of high methanol permeability that degrades the performance of fuel cells. Chitosan membranes modification is performed by adding nanosilica to prevent methanol transport through the membrane. Nanosilica is synthesized by sol-gel method and the particle diameter is obtained by analysis using Breunner Emmet Teller (BET) that is 6.59 nm. Nanosilica is mixed with chitosan solution to obtain nanosilica-chitosan as polymer electrolyte membrane. The membranes are synthesized through phase inversion method with nanosilica composition including 0; 0.5; 1; 2; 3; 5; and 10% w/w of chitosan. Characterization of the membranes indicate that the results of water swelling, proton conductivity and methanol permeability of the membrane with 3% nanosilica respectively were 49.23%, 0.231 S/cm, and 5.43 x 10-7 cm2/s. Based on the results of membrane selectivity calculation, the optimum membrane is the composition of 3% nanosilica with value 5.91 x 105 S s cm-3. The results of functional groups analysis with FTIR showed that it was only physical interaction that occurred between chitosan and nanosilica since no significant changes found in peak around the wave number 1000-1250 cm-1.
AB - Chitosan has been widely used as polymer matrix for Polymer Electrolyte Membrane (PEM) application replacing Nafion which has shortcomings in terms of high methanol permeability that degrades the performance of fuel cells. Chitosan membranes modification is performed by adding nanosilica to prevent methanol transport through the membrane. Nanosilica is synthesized by sol-gel method and the particle diameter is obtained by analysis using Breunner Emmet Teller (BET) that is 6.59 nm. Nanosilica is mixed with chitosan solution to obtain nanosilica-chitosan as polymer electrolyte membrane. The membranes are synthesized through phase inversion method with nanosilica composition including 0; 0.5; 1; 2; 3; 5; and 10% w/w of chitosan. Characterization of the membranes indicate that the results of water swelling, proton conductivity and methanol permeability of the membrane with 3% nanosilica respectively were 49.23%, 0.231 S/cm, and 5.43 x 10-7 cm2/s. Based on the results of membrane selectivity calculation, the optimum membrane is the composition of 3% nanosilica with value 5.91 x 105 S s cm-3. The results of functional groups analysis with FTIR showed that it was only physical interaction that occurred between chitosan and nanosilica since no significant changes found in peak around the wave number 1000-1250 cm-1.
UR - http://www.scopus.com/inward/record.url?scp=84984548161&partnerID=8YFLogxK
U2 - 10.1063/1.4945491
DO - 10.1063/1.4945491
M3 - Conference contribution
AN - SCOPUS:84984548161
T3 - AIP Conference Proceedings
BT - 3rd International Conference on Advanced Materials Science and Technology, ICAMST 2015
A2 - Suryana, Risa
A2 - Khairurrijal, null
A2 - Susanto, Heru
A2 - Markusdiantoro, null
A2 - Sutikno, null
A2 - Triyana, Kuwat
PB - American Institute of Physics Inc.
T2 - 3rd International Conference on Advanced Materials Science and Technology, ICAMST 2015
Y2 - 6 October 2015 through 7 October 2015
ER -