TY - JOUR
T1 - Modified ResUNet Architecture for Binarization in Degraded Javanese Ancient Manuscript
AU - Damayanti, Fitri
AU - Yuniarno, Eko Mulyanto
AU - Suprapto, Yoyon Kusnendar
N1 - Publisher Copyright:
© 2024 The authors. This article is published by IIETA and is licensed under the CC BY 4.0 license (http://creativecommons.org/licenses/by/4.0/).
PY - 2024/7
Y1 - 2024/7
N2 - Manuscript binarization is used to convert each pixel in the script image into text and background. Many manuscript binarization methods have been proposed, such as the Otsu, Bernsen, Sauvola, Niblack, Phansalkar and Singh methods. These methods only focus on one problem of a degraded manuscript. In this research, a deep learning approach based on the U-Net method is applied for binarization of degraded ancient manuscripts. Adding layers to the U-Net architecture can cause more parameters and excessive computational calculations. Residual U-Net (ResUNet) is a development of the U-Net method. ResUNet, with its residual blocks, enables efficient and effective feature extraction, capturing fine details of degraded documents. This is important for identifying and distinguishing text from various artifacts and noise in the document. ResUNet can handle various types of image degradation thanks to its residual blocks that prevent gradient loss and strengthen features over the network. Convolutional Long Short-Term Memory (ConvLSTM) is a variant of LSTM (Long Short-Term Memory) designed for spatial data such as images. ConvLSTM combines the ability of LSTM to learn long-term dependencies with the power of CNN in processing spatial data. The combination of ResUNet and ConvLSTM for binarization of degraded documents is a powerful strategy that leverages the power of both architectures to improve quality and accuracy in separating text from degraded background. The aim of this research is to determine the performance evaluation results of the combination of ResUNet and ConvLSTM architectures on the binarization of degraded ancient Javanese manuscripts. The trial was conducted using datasets taken from several museums. The dataset consists of 1200 images of Javanese ancient manuscripts that were damaged in the form of perforated paper, ink bleed through from the previous page, and red or brownish spots. The proposed method produces a loss value of 0.0559, F-Measure 92.89%, PSNR 18.52 dan IoU 0.85.
AB - Manuscript binarization is used to convert each pixel in the script image into text and background. Many manuscript binarization methods have been proposed, such as the Otsu, Bernsen, Sauvola, Niblack, Phansalkar and Singh methods. These methods only focus on one problem of a degraded manuscript. In this research, a deep learning approach based on the U-Net method is applied for binarization of degraded ancient manuscripts. Adding layers to the U-Net architecture can cause more parameters and excessive computational calculations. Residual U-Net (ResUNet) is a development of the U-Net method. ResUNet, with its residual blocks, enables efficient and effective feature extraction, capturing fine details of degraded documents. This is important for identifying and distinguishing text from various artifacts and noise in the document. ResUNet can handle various types of image degradation thanks to its residual blocks that prevent gradient loss and strengthen features over the network. Convolutional Long Short-Term Memory (ConvLSTM) is a variant of LSTM (Long Short-Term Memory) designed for spatial data such as images. ConvLSTM combines the ability of LSTM to learn long-term dependencies with the power of CNN in processing spatial data. The combination of ResUNet and ConvLSTM for binarization of degraded documents is a powerful strategy that leverages the power of both architectures to improve quality and accuracy in separating text from degraded background. The aim of this research is to determine the performance evaluation results of the combination of ResUNet and ConvLSTM architectures on the binarization of degraded ancient Javanese manuscripts. The trial was conducted using datasets taken from several museums. The dataset consists of 1200 images of Javanese ancient manuscripts that were damaged in the form of perforated paper, ink bleed through from the previous page, and red or brownish spots. The proposed method produces a loss value of 0.0559, F-Measure 92.89%, PSNR 18.52 dan IoU 0.85.
KW - ConvLSTM
KW - Javanese
KW - Residual U-Net
KW - ancient manuscript
KW - binarization
KW - degraded
UR - http://www.scopus.com/inward/record.url?scp=85200413049&partnerID=8YFLogxK
U2 - 10.18280/mmep.110706
DO - 10.18280/mmep.110706
M3 - Article
AN - SCOPUS:85200413049
SN - 2369-0739
VL - 11
SP - 1758
EP - 1772
JO - Mathematical Modelling of Engineering Problems
JF - Mathematical Modelling of Engineering Problems
IS - 7
ER -