Molecular Docking Studies of Interaction Curcumin against Beta-secretase 1, Amyloid A4 Protein, Gamma-secretase and Glycogen Synthase Kinase-3β as Target Therapy for Alzheimer Disease

Mokhamad Fahmi Rizki Syaban*, Rislan Faiz Muhammad, Basyar Adnani, Gumilar Fardhani Ami Putra, Nabila Erina Erwan, Safira Dita Arviana, Agung Dwi Krisnayana, Dedy Budi Kurniawan

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

4 Citations (Scopus)

Abstract

Alzheimer's disease (AD) is the most common form of dementia. In several studies we reviewed, curcumin can inhibit formation, extension, and destabilization of Amyloid A4 protein. Aim: This study aims to prove the consistency of curcumin as a candidate therapy for Alzheimer's disease using in silico approach. Methods: Biomolecular experimental study was conducted using in silico method supported by protein database, Pymol, Discovery studio, and PyRx software. A comprehensive literature search was conducted to found the potential target for Alzheimer's disease. We found Beta-secretase 1, Amyloid A4 protein, Gamma-secretase, and Glycogen synthase kinase (GSK)-3β as a protein target. Pharmacokinetic analysis was conducted based on the Lipinski Rule of Five criteria on the Lipinski Rule of Five websites and using the PreADMET website. Results: From the pharmacokinetic analysis, curcumin had met all the Lipinski and PreADMET criteria. The HIA and plasma binding test results showed 94.4% and 88%, which represent a good pharmacokinetic and bioavailability profile as a drug. GSK-3β had the strongest binding affinity with curcumin as recorded as-8.3 kcal/mol compared with the other four protein targets in this analysis. Conclusion: The strongest binding affinity between curcumin and GSK-3β reveals the potential target protein for Alzheimer's Disease therapy. Those interactions represent the potential involvement in the pathogenesis of Alzheimer's Disease with a modification of the additional sites on the tau molecule. This drug candidate discovery shows a preferable pharmacokinetics and bioavailability substance profile with a promising target through the Structure-based Drug Design (SBDD) approach. However, curcumin ability for BBB penetration still needs to be modified to improve its pharmacokinetic properties for becoming a novel Alzheimer's disease drug.

Original languageEnglish
Pages (from-to)3069-3074
Number of pages6
JournalResearch Journal of Pharmacy and Technology
Volume15
Issue number7
DOIs
Publication statusPublished - Jul 2022
Externally publishedYes

Keywords

  • Alzheimer
  • Amyloid A4 Protein
  • Beta-secretase 1
  • Curcumin
  • Gamma-secretase
  • Glycogen Synthase Kinase-3β
  • Molecular Docking

Fingerprint

Dive into the research topics of 'Molecular Docking Studies of Interaction Curcumin against Beta-secretase 1, Amyloid A4 Protein, Gamma-secretase and Glycogen Synthase Kinase-3β as Target Therapy for Alzheimer Disease'. Together they form a unique fingerprint.

Cite this