Morphology and inhibition performance of Ag thin film as antimicrobial coating deposited by RF-PVD on 316 L stainless steel

A. Purniawan*, Y. S.A. Khrisna, A. Rasyida, T. M. Atmono

*Corresponding author for this work

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

Abstract

Foreign body related infection (FBRIs) is caused by forming biofilm of bacterial colony of medical equipment surfaces. In many cases, the FBRIs is still happened on the surface after medical sterilization process has been performed. In order to avoid the case, surface modification by antimicrobial coating was used. In this work, we present silver (Ag) thin film on 316 L stainless steel substrate surface was deposited using Radio Frequency Sputtering PVD (RF-PVD). The morphology of Ag thin film were characterized using SEM-EDX. Surface roughness of the thin film was measured by AFM. In addition, Kirby Bauer Test in Escherichia coli (E. coli) was conducted in order to evaluate the inhibition performance of the Ag thin film antimicrobial coating. Based on SEM and AFM results show that the particle size is increased from 523 nm to 708 nm and surface roughness from 9 to 20 nm for deposition time 10 minutes to 20 minutes, respectively. In addition, the inhibition layer of the coating is about 29 mm.

Original languageEnglish
Title of host publicationProceedings of the 3rd International Conference on Materials and Metallurgical Engineering and Technology, ICOMMET 2017
Subtitle of host publicationAdvancing Innovation in Materials Science, Technology and Applications for Sustainable Future
EditorsMas Irfan P. Hidayat
PublisherAmerican Institute of Physics Inc.
ISBN (Electronic)9780735416406
DOIs
Publication statusPublished - 3 Apr 2018
Event3rd International Conference on Materials and Metallurgical Engineering and Technology: Advancing Innovation in Materials Science, Technology and Applications for Sustainable Future, ICOMMET 2017 - Surabaya, Indonesia
Duration: 30 Oct 201731 Oct 2017

Publication series

NameAIP Conference Proceedings
Volume1945
ISSN (Print)0094-243X
ISSN (Electronic)1551-7616

Conference

Conference3rd International Conference on Materials and Metallurgical Engineering and Technology: Advancing Innovation in Materials Science, Technology and Applications for Sustainable Future, ICOMMET 2017
Country/TerritoryIndonesia
CitySurabaya
Period30/10/1731/10/17

Keywords

  • Ag thin film
  • Antimicrobial coating
  • RF-PVD
  • implant

Fingerprint

Dive into the research topics of 'Morphology and inhibition performance of Ag thin film as antimicrobial coating deposited by RF-PVD on 316 L stainless steel'. Together they form a unique fingerprint.

Cite this