TY - GEN
T1 - MPPT design on solar farm using perturb and observe technique considering tilt angle and partial shading in Giligenting Island
AU - Soedibyo,
AU - Anam, Sjamsjul
AU - Hafidz, Isa
AU - Zulkarnain, Gusti Rinaldi
AU - Ashari, Mochamad
N1 - Publisher Copyright:
© 2017 IEEE.
PY - 2017/11/28
Y1 - 2017/11/28
N2 - Giligenting Island is located in Sumenep, Madura. It is very potential for application the renewable energy. Based on the measurement, the maximum potential irradiance solar farm in the Island is accounted 610 W/m2. To convert the irradiance power to electricity, photovoltaic is applied. However, photovoltaic modules are drastically decrease their power output in case of the partial shading conditions. Therefore, perturb and obverse method (PnO) is introduced to track the point to establish the maximum power. In addition, the maximum power point tracking (MPPT) is employed to reduce the shading effects, thus by both method, the power generated is maximum. Besides, this technique is able to overcome the limitations in tracking efficiency, oscillation in steady state, and transient period. In this paper to maximize the irradiance observation, optimal site selection is undertaken by considering the tilt angles of PV and by approaching a sun path diagram model. Based on this study and experiment that have been taken in Giligenting Island, it is summed up that the proposed MPPT algorithm is superior to P&O technique with varies partial shading conditions. The results of the simulation yield that the power output of photovoltaic cover 99.4% of the load demand in Giligenting Island.
AB - Giligenting Island is located in Sumenep, Madura. It is very potential for application the renewable energy. Based on the measurement, the maximum potential irradiance solar farm in the Island is accounted 610 W/m2. To convert the irradiance power to electricity, photovoltaic is applied. However, photovoltaic modules are drastically decrease their power output in case of the partial shading conditions. Therefore, perturb and obverse method (PnO) is introduced to track the point to establish the maximum power. In addition, the maximum power point tracking (MPPT) is employed to reduce the shading effects, thus by both method, the power generated is maximum. Besides, this technique is able to overcome the limitations in tracking efficiency, oscillation in steady state, and transient period. In this paper to maximize the irradiance observation, optimal site selection is undertaken by considering the tilt angles of PV and by approaching a sun path diagram model. Based on this study and experiment that have been taken in Giligenting Island, it is summed up that the proposed MPPT algorithm is superior to P&O technique with varies partial shading conditions. The results of the simulation yield that the power output of photovoltaic cover 99.4% of the load demand in Giligenting Island.
KW - Maximum power point tracking
KW - Perturb and observe technique
KW - Photovoltaic
KW - Sun path diagram
UR - http://www.scopus.com/inward/record.url?scp=85043603576&partnerID=8YFLogxK
U2 - 10.1109/ISITIA.2017.8124084
DO - 10.1109/ISITIA.2017.8124084
M3 - Conference contribution
AN - SCOPUS:85043603576
T3 - 2017 International Seminar on Intelligent Technology and Its Application: Strengthening the Link Between University Research and Industry to Support ASEAN Energy Sector, ISITIA 2017 - Proceeding
SP - 222
EP - 226
BT - 2017 International Seminar on Intelligent Technology and Its Application
PB - Institute of Electrical and Electronics Engineers Inc.
T2 - 18th International Seminar on Intelligent Technology and Its Application, ISITIA 2017
Y2 - 28 August 2017 through 29 August 2017
ER -