MRI-based brain tumor segmentation using Gaussian mixture model with reversible jump Markov chain Monte Carlo algorithm

Anindya Apriliyanti Pravitasari*, Yusuf Puji Hermanto, Nur Iriawan, Irhamah, Kartika Fithriasari, Santi Wulan Purnami, Widiana Ferriastuti

*Corresponding author for this work

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

2 Citations (Scopus)

Abstract

A brain tumor is the 15th deadly disease in Indonesia according to the WHO in 2018. In medical treatment, brain tumors can be detected through Magnetic Resonance Imaging (MRI). The main problem is how to separate the brain tumor area as the Region of interest (ROI) with the other healthy part (Non-ROI) in the MRI. In the computational statistics, a method used in image segmentation is cluster analysis. Model-Based Clustering with Gaussian Mixture Model (GMM) is often used to find the cluster where the tumor is placed. The EM Algorithm and Bayesian coupled with Markov chain Monte Carlo (MCMC) could be used to optimize the GMM. However, both EM and Bayesian MCMC are assumed that the number of clusters is fixed. Therefore, to select the optimum number of clusters, we have to use certain cluster selection criteria. This process makes the segmentation quite complicated and is not automatic. This study tries to employ the GMM using Reversible Jump Markov Chain Monte Carlo Algorithm (GMM-RJMCMC) to segment the MRI-based brain tumor and compare it with the GMM-MCMC. The use of RJMCMC is expected to accelerate the calculation process, which can provide the number of optimum clusters automatically; moreover, the MRI image segmentation could become more adaptive. The result shows that from the Correct Classification Ratio (CCR), the GMM-RJMCMC could provide an equal segmentation results compared to the GMM-MCMC, however, GMM-RJMCMC has the advantage, that is faster in executing the algorithm, this makes GMM-RJMCMC more efficient in finding the optimum number of clusters.

Original languageEnglish
Title of host publication2nd International Conference on Science, Mathematics, Environment, and Education
EditorsNurma Yunita Indriyanti, Murni Ramli, Farida Nurhasanah
PublisherAmerican Institute of Physics Inc.
ISBN (Electronic)9780735419452
DOIs
Publication statusPublished - 18 Dec 2019
Event2nd International Conference on Science, Mathematics, Environment, and Education, ICoSMEE 2019 - Surakarta, Indonesia
Duration: 26 Jul 201928 Jul 2019

Publication series

NameAIP Conference Proceedings
Volume2194
ISSN (Print)0094-243X
ISSN (Electronic)1551-7616

Conference

Conference2nd International Conference on Science, Mathematics, Environment, and Education, ICoSMEE 2019
Country/TerritoryIndonesia
CitySurakarta
Period26/07/1928/07/19

Fingerprint

Dive into the research topics of 'MRI-based brain tumor segmentation using Gaussian mixture model with reversible jump Markov chain Monte Carlo algorithm'. Together they form a unique fingerprint.

Cite this